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Abstract:  Location is capitalized into the price of the land the structure of a property is 

built on, and land prices can be expected to vary significantly across space. We account 

for spatial variation of land prices in hedonic house price models using geospatial data 

and a nonparametric method known as geographically weighted regression. To illustrate 

the impact on aggregate price change, quality-adjusted house price indexes and the land 

and structures components are constructed for a city in the Netherlands and compared to 

indexes based on more restrictive models. 
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1. Introduction 

Housing markets have two distinct features: every house is unique and houses are sold 

infrequently. This is problematic for the construct
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imputation price indexes. In conclusion, GWR is a rather flexible method, which can be 

seen as a generalization of traditional hedonic methods. 

We are specifically targeting statistical agencies engaged in the compilation of 

house price indexes. This has several consequences. The agencies should have access to 

geocoded data, but this is hardly a problem these days. The methods applied should be 

relatively easy to explain. Most importantly, the price indexes should be non-revisable. 

This means that the use of the time dummy method, where previously published index 

numbers change when the sample period is extended and new data is added, is ruled out. 

This strengthens the case for constructing hedonic imputation indexes. 

Furthermore, our paper tries to fill a gap in the recent Handbook on Residential 

Property Price Indices (Eurostat et al., 2013) in which the use of geospatial data in the 

estimation of hedonic house price models is not very well covered. 1 The Handbook uses 
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2. A simplification of the ‘builder’s model’ 

2.1 Some basic ideas 

Our starting point is the ‘builder’s model’ proposed by Diewert, de Haan and Hendriks 

(2011) (2015). It is assumed that the value of a property i in period t, t
ip , can be split 

into the value t
iLv  of the land the structure sits on and the value t

iSv  of the structure: 

t
iS

t
iL

t
i vvp += .                 (1) 

The value of land for property i is equal to the plot size in square meters, t
iLz , times the 

price of land per square meter, ta , and the value of the structure equals the size of the 

structure in square meters of living space, t
iSz , times the price of structures per square 

meter, tb .2 After adding an error term tiu  with zero mean, model (1) becomes 

t
i

t
iS

tt
iL

tt
i uzzp ++= ba .               (2) 

The (shadow) prices of both land and structures in (2) are the same for all properties, 

irrespective of their location. In section 3 we relax this assumption and allow for spatial 

variation of, in particular, the price of land. The ‘builder’s model’ takes depreciation of 

the structures into account, a topic we address in section 2.2. 

Equation (2) can be estimated on data of a sample tS  of properties sold in period 

t. This approach, however, suffers from at least three problems. First, the model has no 

intercept term, which hampers the interpretation of 2R  and the use of standard tests in 

Ordinary Least Squares (OLS) regression. Second, a high degree of collinearity between 

land size and structure size can be expected, so that ta  and tb  will be estimated with 

low precision. Finally, heteroskedasticity is likely to occur since the absolute value of 

the errors tends to grow with increasing property prices. 

Our next step is to divide the left hand side and right hand side of equation (2) 

by structure size tiSz , giving 

t
i

tt
i

tt
i rp eba ++=* ,                (3) 

where t
iS

t
i

t
i zpp /* =  is the normalized property price, i.e. the value of the property per 

square meter of living space, t
iS

t
iL

t
i zzr /=  denotes the ratio of plot size and structure 

                                                      
2
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We do not know the exact age of the structures, but we do know the building 

period in decades, from which we can calculate approximate age in decades. Thus, age 

in our data set is a categorical variable. The net depreciation rate is of course categorical 

as well.3 Using multiplicative dummy variables tiaD  that take on the value 1 if in period 

t property i belongs to age category a ),...,1( Aa =  and the value 0 otherwise, and after 

reparameterizing such that t
iS

t zb  is no longer a separate term, model (4) is equivalent to 
t
i

A

a

t
iS

t
ia

tt
iL

tt
i uzDzp ++= � =1

ga . To be able to use standard estimation techniques, we 

modify this model as follows: 

t
i

A

a

t
iS

t
ia

t
a

t
iL

tt
i uzDzp ++= �

=1

ga .               (5) 

No restrictions are placed on the parameters t
ag , and the new functional form is 

neither continuous nor smooth. This is somewhat problematic from a theoretical point 

of view, because it is at odds with the initial straight-line depreciation model. On the 

other hand, our approach introduces some flexibility. Age of the structures is not only 

important for modeling depreciation, it can also be seen as an attribute of the dwelling 

itself in that houses built in a particular decade are more in demand than other houses, 

perhaps for their architectural style or for other reasons. 

Diewert, de Haan and Hendriks (2015) also show how to incorporate the number 

of rooms. The new value of the structures becomes t
iS

t
iR

tt
i

tt zza )1)(1( mdb +- , where tm  

is the parameter for the number of rooms t
iRz .4 The linear form for this expression is 
t
iS

t
iR

t
i

tttt
iS

t
i

ttt
iS

t
iR

ttt
iS

t zzazazzz mdbdbmbb --+ . Using dummies t
irD  for the number of 

rooms with the value 1 if in period t the property belongs to category r ),...,1( Rr =  and 

the value 0 otherwise, and reparameterizing again, the extension of (5) becomes 

t
i

A

a

R

r

A

a

R

r

t
iS

t
ir

t
ia

t
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t
iS

t
ir

t
r

t
iS

t
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t
a

t
iL

tt
i uzDDzDzDzp ++++= � � � �

= = = =1 1 1 1

hlga .          (6) 

Next, in order to save degrees of freedom, we ignore the ‘second-order’ effects 

due to the interaction terms t
ir

t
ia DD , yielding 

                                                      
3 Diewert, de Haan and Hendriks (2015) treated approximate age as a continuous variable, despite the fact 
that it is in fact categorical. They found that the estimated net depreciation rate was quite volatile





 8

t
ka . Using multiplicative postcode dummy variables ikD , which take on the value of 1 if 

property i belongs to k and the value 0 otherwise, an improved version of model (7) for 

the unadjusted property price is 

t
i

A

a

R

r

t
iS

t
ir

t
r

t
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t
ia

t
a

K
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t
iLik

t
k

t
i uzDzDz
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order approximations are applied. The expansion method makes use of geospatial data 

but is basically parametric as it calibrates a prespecified parametric model for the trend 

of land prices across space (Fotheringham et al., 1998b). 

The method we will apply, referred to as Geographically Weighted Regression 

(GWR), deals with spatial nonstationarity in a truly nonparametric fashion (Brunsdon et 

al., 1996; Fotheringham et al., 1998a).5 Let us remove the structural characteristics from 

model (11) for a moment and thus consider land as the only independent variable. Using 

),( iii yxaa = , the model becomes 

iiLiii uzyxp += ),(a .              (13) 

Note that we have dropped the superscript t for convenience, but it should be clear that 

we estimate all models for each time period separately. Note also that the prices of land 

can be estimated for all points in space, not just for the sample observations, enabling us 

to depict a surface of land prices for the entire study area. 

Model (13) can be estimated using a moving kernel window approach, which is 

essentially a form of WLS regression. In order to obtain an estimate for the price of land 

),( ii yxa  for property i, a weighted regression is run where each related observation j 

(i.e., each neighboring property) is given a weight ijw  )( ji ¹ . The weight ijw  should be 

a monotonic decreasing function of distance ijd  between ),( ii yx  and ),( jj yx . There is 

a range of possible functional forms. In this paper we have chosen the frequently-used 

bi-square function given by: 

( )22 21       if  

0                         otherwise

ij ij
ij

d h d h
w

� - <	= 

	�

,            (14) 

where h denotes the bandwidth defining the rate of decrease in terms of distance. The 

choice of bandwidth involves a trade-off between bias and variance. A larger bandwidth 

generates an estimate with larger bias but smaller variance whereas a smaller bandwidth 

produces an estimate with smaller bias but larger variance. This bias-variance trade-off 

motived us to choose the bandwidth by minimizing the cross-validation (CV) statistic 

[ ]�
=

¹-=
n

i
ii hyyCV

1

2)(ˆ ,             (15) 

                                                      
5 For a comparison of geographically weighted regression and the spatial expansion method, see Bitter et 
al. (2007). 
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where )(ˆ hy i¹  is the fitted value of iy  with the observations for point i  omitted from the 

calibration process. 

The nonparametric GWR approach to dealing with spatial nonstationarity of the 

price of land has to be adjusted for the fact that models (11) and (12) include structural 

characteristics with spatially fixed parameters. This leads to a specific instance of the 

semi-parametric Mixed GWR (MGWR) approach discussed by Brunsdon et al. (1999) 

in which some parameters are spatially fixed and the remaining parameters are allowed 

to vary across space. To describe the estimation procedure, it is useful to change over to 

matrix notation. Denoting the number of observations by n, model (11) can be written in 

matrix form as 

u�Z�ZP ++Ä= SL              (16) 

where T
nn yxyxyx )),(),...,,(),,(( 2211 aaa=�  is a vector of land prices to be estimated, 

Ä  is an operator that multiplies each element of �  by the corresponding element of LZ , 

and SZ  is the matrix of structural characteristics included in model (11), given by 

11 1 12 1 1 1

21 2 22 2 2 2

1 2

S S j S

S S j S
S

n nS n nS nj nS

D z D z D z

D z D z D z

D z D z D z

� �
� �
� �=
� �
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(1) regressing each column of SZ  against LZ  using the GWR calibration method and 

computing the residuals SZSIQ )( -= ; 

(2) regressing the dependent variable P against LZ  using the GWR approach and then 

computing the residuals PSIR )( -= ;  

(3) regressing the residuals R against the residuals Q using OLS in order to obtain the 

estimates RQQQ� TT 1)(ˆ -= ;  

(4) subtracting �Z ˆ
S  from P and regressing this part against LZ  using GWR to obtain 

estimates [ ] )ˆ)(,(),(),(ˆ
1

�ZPWZZWZ Sii
T
LLii

T
Lii yxyxyx -=

-
a . 

The predicted values for the property prices can be expressed as 

LP�Z�ZPSP =+-= ˆ)ˆ(ˆ
SS ,             (17) 

with [ ] )()()()()(
1

SISIZZSISIZZSISL -
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Equation (18) may need some explanation. All quanti
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An alternative to the Laspeyres price index given by (19) is the hedonic double 

imputation Paasche price index, defined on the sample tS  of properties sold in period t 

),...,1( Tt = : 

�

�

Î

Î=

t

t

Si

t
i

Si

t
i

t
Paasche p

p
P

)(0
0

ˆ

ˆ

.              (20) 

The imputed constant-quality prices )(0ˆ t
ip  are estimates of the prices that would prevail 

in period 0 if the property characteristics were those of period t, which are estimated as 
t
iS

t
i

t
iLi

t
i zzp )(00)(0 ˆˆˆ ba += , where �� -

=

-

=
++=

1

1

01

1

00)(0 ˆˆˆˆ R

r

t
irr

A

a

t
iaa

t
i DD lgqb  denotes the period 0 

constant-quality price of structures. By substituting the constant-quality prices and the 

predicted prices t
iS

t
i

t
iL

t
i

t
i zzp ba ˆˆˆ +=  into equation (20), the imputation Paasche index can 

be written as 

�

�

�

�

�

�

Î

Î

Î

Î
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+
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z
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0

)0(
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b
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,        (21) 

where �� ÎÎ tt Si

t
iLiSi

t
iL

t
i zz 0ˆ/ˆ aa  and �� ÎÎ tt Si

t
iS

t
iSi

t
iS

t
i zz )(0ˆ/ˆ bb  are Paasche price indexes 

of land and structures, which are weighted by �� ÎÎ
+=
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5. Empirical evidence 

5.1 The data set 

The data set we will use was provided by the Dutch association of real estate agents. It 

contains residential property sales for a small city (population is around 60,000) in the 

northeastern part of the Netherlands, the city of “A”, and covers the first quarter of 1998 

to the second quarter of 2008. Statistics Netherlands has geocoded the data. We decided 

to exclude sales on condominiums and apartments since the treatment of land deserves 

special attention in this case. The resulting total number of sales in our data set during 

the ten-year period is 6,397, representing approximately 75% of all residential property 

transactions in “A”. 

The data set contains information on the time of sale, transaction price, a range 

of characteristics for the structure, and characteristics for land. We included only three 

structural characteristics in our models, i.e., usable floor space, building period and type 

of house. For land, we used plot size and postcode or latitude/longitude. After removing 

44 observations with missing values, transaction prices below €10,000, more than 10 

rooms, or ratios of plot size to structure size (usable floor space) larger than 10, we were 

left with 6,353 observations during the sample period. 

Table A1 in the Appendix reports summary statistics by year for the numerical 

variables. The average transaction price significantly increased from 1998 to 2007 and 

then slightly decreased during the first half of 20
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(MGWR). The last model was estimated by mixed geographically weighted regression 

using the software package GWR4.0.9 

Considering that the property transactions are not evenly distributed across space, 

we used the adaptive bi-square function to construct the weighting scheme. In this case, 

the bandwidth is generally referred to as the window size, and its selection procedure is 

equivalent to the choice of the number of nearest neighbors. We derived the optimal 

bandwidth using the ‘Golden Section Search’ approach based on minimizing CV scores 

in a window-size range of 10% to 90%. There is a unique optimal window size for each 

annual sample in terms of prediction power; the CV scores indicated that it was around 

10% for most of the years, except for 1998 (51%), 2001 (36%), and 2003 (29%). Yet, 

for the construction of price indexes, we would prefer a fixed window size for all years, 

especially since the number of sales is almost evenly spread across the whole period. So 

we have chosen a window size of 10% for every year, leading to 60 nearest neighbors 

that were used in the estimation of the MGWR models. 

To compare the performance of the three property price models, two statistics 

were calculated, the Corrected Akaike Information Criterion (AICc) and the Root Mean 

Square Error (RMSE). The AICc takes into account the trade-off between goodness-of-

fit and degrees of freedom and is defined for MGWR models by10 

��



�
��
�

�
--

+
++=

)(2
)(

)2ln()ˆln(2
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the OLSD model. The same ranking is found if the RMSE is used to assess the models. 

These results suggest that land prices indeed vary across space and that MGWR does a 

good job in estimating such nonstationarity. 

 
Table 1: Model estimation and comparison 

 OLS  OLSD  MGWR 

 AICc RMSE  AICc dAIC10 RMSE dRMSE10  AICc dAIC21 RMSE dRMSE21 

1998 6666.26 101.77  6629.82 -36.44 96.96 -4.81  6599.71 -30.11 91.18 -5.78 

1999 7145.61 155.52  7110.61 -35.00 148.37 -7.15  7054.04 -56.57 136.98 -11.39 

2000 7380.38 166.91  7342.49 -37.89 158.99 -7.92 
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Table 2 contains summary statistics for the price per square meter of land for the 

transacted properties, estimated using MGWR. The average estimated land price is quite 

volatile; the change over time differs greatly from that of the average transaction price 

of the properties (see Table A.1 in the Appendix). Following a sharp increase in 1999, 

the estimated average land price peaked in 2002, experienced a dramatic drop in 2003, 

and then increased again. The value in the starting year 1998 of approximately 45 euros 

per square meter of land is extremely low. This has
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5.3 A comparison of different hedonic price indexes 
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Figure 2: Chained hedonic imputation Paasche house price index 
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city of “A” appreciated less compared to the rest of the country, or our indexes better 

adjust for quality changes. We think that the second reason is more important. 

The picture changes when we look at the Fisher indexes for the price of land in 
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to 1998=100, is also plotted in Figure 5. During the first half of the sample period, our 

price indexes for structures exhibit roughly the same trend as the construction cost index. 

During the second half of the sample period, the construction cost index flattens, but the 

structures price indexes keep rising. A construction cost index does not necessarily have 

to be identical to an implicitly derived price index for structures, and it may suffer from 

some measurement problems,12 but this divergence is nevertheless puzzling. 

 
Figure 5: Chained hedonic imputation Fisher price indexes for 
structures and official construction cost index 
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Figure 6: Estimates of value shares of land and structures, 
OLSD-based  
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variance inflation factor (VIF) for the estimated parameters for the ratio of plot size and 

structure size did not point to significant multicollinearity either. 

The use of the property price per square meter of living space as the dependent 

variable in the models (i.e. the normalization) likely reduced multicollinearity, but it can 

have led to instability of the parameter estimates for land and structures if it resulted in 

‘classical’ heteroskedasticity where the regression residuals grow with increasing ratios 

of plot size to structure size. For the OLS and OLSD models, the Breusch-Pagan test did 

indeed point to heteroskedasticity.13 A related problem is the relatively small variation 

in the plot size to structure size ratios. 

Scatterplots of the normalized prices against the plot size to structure size ratios 

showed some extreme outliers; most of them are in the higher ranges of the normalized 

prices and ratios. To check if deleting outliers would stabilize the indexes, we removed 

all observations with ratios of plot size to structure size larger than 5 (instead of 10), re-

ran OLSD regressions and calculated chained double imputation price indexes again. 

The new OLSD-based Fisher indexes for land and structures are depicted by the dashed 

lines in Figure 7. Compared with the initial indexes the volatility is slightly reduced, but 

the trends have changed dramatically: the new structure price index sits above the old 

index and the new land price index sits far below the old one. This troubling result is 

touched upon in section 6 below. 

6. Discussion and conclusions 

Land is typically not explicitly included in hedonic models for house prices, which can 

bias the results. Ignoring spatial nonstationarity of land prices can also generate bias. As 

far as we know, the present paper is the first attempt to account for nonstationarity of 

land prices in the construction of hedonic imputation house price indexes using spatial 

econometrics. We linearized the ‘builder’s model’ proposed by Diewert, de Haan and 

Hendriks (2015), allowed the price of land to vary at the individual property level, and 

estimated the model for the normalized property price (i.e., the price of the property per 

square meter of living space) by MGWR, a semi-parametric method, on annual data for 

                                                      
13
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the Dutch city of “A”. We then constructed chained imputation Laspeyres, Paasche and 

Fisher indexes and compared them with price indexes based on more restrictive models: 

a model with no variation in land prices and a model where land prices can vary across 

postcode areas, both estimated by OLS. 

The Fisher house price indexes were quite insensitive to the choice of model, but 
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The probable cause is that the price of land is dependent on the size of the land plot: the 

price per square meter of land tends to fall with increasing plot size. Diewert, de Haan 

and Hendriks (2015) adjusted for this type of nonlinearity using linear splines to model 

the price of land. In future work we want to modify our models in the same spirit, either 

by using splines as well or by explicitly specifying some nonlinear function. 

What worries us most is the extreme volatility of the MWGR-based indexes for 

land and structures. The MWGR method makes use of prices of neighboring properties, 

and since neighboring properties may be expected to have similar plot sizes, our results 

are unexpected and counterintuitive. We lack an explanation of this finding, but it does 

suggest that the semi-parametric MGWR approach produces inherently unstable results. 

Thus, while the MWGR model outperforms the other two models in terms of statistical 

criteria (AICc and RMSE) and produces a house price index that is very similar to the 

OLSD model, it aggravates instability and does not seem appropriate for estimating the 

land and structures components. 

References 

Bitter, C., G.F. Mulligan and S. Dall’erba (2007), “Incorporating Spatial Variation in 
Housing Attribute Prices: A Comparison of Geographically Weighted Regression 
and the Spatial Expansion Method”, Journal of Geographical Systems 9, 7-27. 

Brunsdon, C., A.S. Fotheringham, and M.E. Charlton (1996), “Geographically 
Weighted Regression: A Method for Exploring Spatial Nonstationarity”, 
Geographical Analysis 28, 281-298. 

Brunsdon, C., A.S. Fotheringham, and M.E. Charlton (1999), “Some Notes on 
Parametric Significance Tests for Geographically Weighted Regression”, Journal 
of Regional Science 39, 497-524. 



 26

Diewert, W.E., J. de Haan and R. Hendriks (2015), “Hedonic Regressions and the 
Decomposition of a House Price index into Land and Structure Components”, 
Econometric Reviews 34, 106-126. DOI: 10.1080/07474938.2014.944791. 

Dorsey, R.E., H. Hu, W.J. Mayer, and H.C. Wang (2010), “Hedonic versus Repeat-
Sales Housing Price Indexes for Measuring the Recent Boom-Bust Cycle”, 
Journal of Housing Economics 19, 75-93. 

Eurostat, ILO, IMF, OECD, UNECE and World Bank (2013), Handbook on Residential 
Property Price Indices. Luxemburg: Publications Office of the European Un



 27

Hurvich, C.M. and C.L. Tsai (1989), “Regression and Time Series Model Selection in 
Small samples”, Biometrika 76, 297-307.  

Jones, J.P. and E. Casetti (1992), Applications of the Expansion Method. London: 
Routledge. 

Mei, C.L., N. Wang and W. X. Zhang (2006), “Testing the Importance of the 
Explanatory Variables in a Mixed Geographically Wei




