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Abstract: Location is capitalized into the price of the lahé structure of a property is
built on, and land prices can be expected to vnyifecantly across space. We account
for spatial variation of land prices in hedonic kewprice models using geospatial data
and a nonparametric method known as geographia@ighted regression. To illustrate
the impact on aggregate price change, quality-ssfjusouse price indexes and the land
and structures components are constructed foyancihe Netherlands and compared to
indexes based on more restrictive models.
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1. Introduction

Housing markets have two distinct features: evenysk is unique and houses are sold
infrequently. This is problematic for the construct






imputation price indexes. In conclusion, GWR isther flexible method, which can be
seen as a generalization of traditional hedonihous.

We are specifically targeting statistical agen@agaged in the compilation of
house price indexes. This has several consequehtesgencies should have access to
geocoded data, but this is hardly a problem thegs.drhe methods applied should be
relatively easy to explain. Most importantly, thecp indexes should be non-revisable.
This means that the use of the time dummy methderevpreviously published index
numbers change when the sample period is extemdbdew data is added, is ruled out.
This strengthens the case for constructing hedamatation indexes.

Furthermore, our paper tries to fill a gap in teeentHandbook on Residential
Property Price IndicegEurostat et al., 2013) in which the use of getiapdata in the
estimation of hedonic house price models is noy wesll covered: The Handbook uses



2. A simplification of the ‘builder’s model’

2.1 Some basic ideas

Our starting point is the ‘builder's model’ propdskey Diewert, de Haan and Hendriks
(2011) (2015). It is assumed that the value ofa@pertyi in periodt, p', can be split
into the valuev, of the land the structure sits on and the valyef the structure:

pit = VitL +Vits : (1)

The value of land for propertyis equal to the plot size in square metejs, times the
price of land per square meter', and the value of the structure equals the siz@ef
structure in square meters of living spazg, times the price of structures per square
meter, b'.” After adding an error term; with zero mean, model (1) becomes
p=a'z +b'zg +y;. 2
The (shadow) prices of both land and structure@)rare the same for all properties,
irrespective of their location. In section 3 wearethis assumption and allow for spatial
variation of, in particular, the price of land. Ttoelilder's model’ takes depreciation of
the structures into account, a topic we addresgation 2.2.

Equation (2) can be estimated on data of a sar@plef properties sold in period
t. This approach, however, suffers from at leastdlproblems. First, the model has no
intercept term, which hampers the interpretatiorRbfand the use of standard tests in
Ordinary Least Squares (OLS) regression. Secohijhadegree of collinearity between
land size and structure size can be expected,at@thand ' will be estimated with
low precision. Finally, heteroskedasticity is Iikeb occur since the absolute value of
the errors tends to grow with increasing properiggs.

Our next step is to divide the left hand side agttrhand side of equation (2)

by structure sizezg, giving

Pl =alr + 0!+ e, @)

where p = p'/ z, is the normalized property price, i.e. the valfighe property per
square meter of living spacg, =z, / z, denotes the ratio of plot size and structure
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We do not know the exact age of the structureswaitdo know the building
period in decades, from which we can calculate @pprate age in decades. Thus, age
in our data set is a categorical variable. Thedegreciation rate is of course categorical
as well® Using multiplicative dummy variableB;, that take on the value 1 if in period
t propertyi belongs to age categoay(a=1,...,A) and the value O otherwise, and after
reparameterizing such th#t z;, is no longer a separate term, model (4) is eqeintab
pi=a'z + ::lgt D,z +ui. To be able to use standard estimation techniques,
modify this model as follows:

A
p=a'zd + gDLz +ul. ©)
a=1

No restrictions are placed on the parametgrsand the new functional form is
neither continuous nor smooth. This is somewhablproatic from a theoretical point
of view, because it is at odds with the initialagght-line depreciation model. On the
other hand, our approach introduces some flexybifige of the structures is not only
important for modeling depreciation, it can alsoseen as an attribute of the dwelling
itself in that houses built in a particular decagle more in demand than other houses,
perhaps for their architectural style or for otheasons.

Diewert, de Haan and Hendriks (2015) also show twincorporate the number
of rooms. The new value of the structures becotds- d'a;)(1+ mzy)z,, where m
is the parameter for the number of rooms* The linear form for this expression is
b'zg + b'mz,zs - b'd'az, - b'd' majz,z, . Using dummiedD; for the number of
rooms with the value 1 if in periddthe property belongs to categaryr =1,...,R) and
the value 0 otherwise, and reparameterizing agiagnextension of (5) becomes

A R A R
pi=a'z + g.D,zs+ /Dizs+  h,D.Dpzg+ui. (6)

r
a=1 r=1 a=lr=1

Next, in order to save degrees of freedom, we igrioe ‘second-order’ effects

t
ir ?

due to the interaction terni3; D; , yielding

% Diewert, de Haan and Hendriks (2015) treated apprate age as a continuous variable, despite tte fa
that it is in fact categorical. They found that #&imated net depreciation rate was quite volatile






a, . Usingmultiplicativepostcode dummy variable3, , which take on the value of 1 if
propertyi belongs tdk and the value 0 otherwise, an improved versiomodel (7) for

the unadjusted property price is
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order approximations are applied. The expansiorhotetnakes use of geospatial data
but is basically parametric as it calibrates a peesied parametric model for the trend
of land prices across space (Fotheringham et298H).

The method we will apply, referred to &eographically Weighted Regression
(GWR), deals with spatial nonstationarity in ayrabnparametric fashion (Brunsdon et
al., 1996; Fotheringham et al., 19984kt us remove the structural characteristics from
model (11) for a moment and thus consider landh@®hly independent variable. Using
a, =a(x,y,), the model becomes

p=ax,y)z, +u. (13)
Note that we have dropped the supersdript convenience, but it should be clear that
we estimate all models for each time period sepbraiote also that the prices of land
can be estimated for all points in space, notfusthe sample observations, enabling us
to depict a surface of land prices for the entivelg area.

Model (13) can be estimated using a moving kernetaw approach, which is
essentially a form of WLS regression. In order btatn an estimate for the price of land
a(x,y,) for propertyi, a weighted regression is run where each relabseéroation|
(i.e., each neighboring property) is given a weight(i * ). The weightw; should be
a monotonic decreasing function of distamgcebetween(x;,y, )and(x;,y;). There is
a range of possible functional forms. In this paperhave chosen the frequently-used
bi-square functiorgiven by:

_ (t-d/m) ifd<n

0 otherwi:

] (14)
whereh denotes the bandwidth defining the rate of deerétmaserms of distance. The
choice of bandwidth involves a trade-off betweesstand variance. A larger bandwidth
generates an estimate with larger bias but smadleance whereas a smaller bandwidth
produces an estimate with smaller bias but largeiaxce. This bias-variance trade-off
motived us to choose the bandwidth by minimizingdtoss-validation(CV) statistic

Cv = n [yi B 91i(h)]2’ (15)

i=1

® For a comparison of geographically weighted regjoesand the spatial expansion method, see Bitter e
al. (2007).



where y,; (h)is the fitted value ofy, with the observations for pointomitted from the
calibration process.

The nonparametric GWR approach to dealing withigpabnstationarity of the
price of land has to be adjusted for the fact thatels (11) and (12) include structural
characteristics with spatially fixed parametersisTleads to a specific instance of the
semi-parametric Mixed GWR (MGWR) approach discudsgdrunsdon et al. (1999)
in which some parameters are spatially fixed ardrémaining parameters are allowed
to vary across space. To describe the estimatiotepure, it is useful to change over to
matrix notation. Denoting the number of observatibgn, model (11) can be written in
matrix form as

P=zZ A +Zg +u (16)

where =(a(x,V,),a(x,,¥,),...a(X,,y,))" is a vector of land prices to be estimated,
A is an operator that multiplies each element dfy the corresponding element 2f ,
and Z g is the matrix of structural characteristics iné@ddn model (11), given by

Dllz:ls DlZZIS D1 i Zg
_ D21228 D22 ZZS DZj ZZS

s =
Dnlan DrQ ZnS DannS
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(1) regressing each column dfy againstZ, using the GWR calibration method and
computing the residual® =(1 - )Zg;

(2) regressing the dependent variaBlagainstZ, using the GWR approach and then
computing the residualR = (I - S)P;

(3) regressing the residudis against the residua3 using OLS in order to obtain the
estimates =(Q"Q)'Q'R;

4) subtractingZSA from P and regressing this part agaiZst using GWR to obtain
estimatesd (x,,y,) = [ZTW(x, ¥)Z | ZIW(x,y)(P- Z¢ ).

The predicted values for the property prices caaxpgessed as

P=S(P-Z,)+Zs =LP, (17)
withL S (I 92z 0 90 92]'20 9 (-9
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Equation (18) may need some explanation. All quanti
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An alternative to the Laspeyres price index givgn1®) is the hedonic double
imputation Paasche price index, defined on the &apof properties sold in period
(t=1..T):

P!
POt —_ g (20)

Paasche — ~o)
ihs |
The imputed constant-quality priceﬁé’“) are estimates of the prices that would prevail
in period O if the property characteristics werestn of period, which are estimated as
PPV =40z, + bz, where b =¢g°+ " g’DL+ " /°D} denotes the period 0
constant-quality price of structures. By substitgtthe constant-quality prices and the
predicted pricesp' =4'7, + 'z, into equation (20), the imputation Paasche index c

be written as

At ot At ot At ot At ot

A [ai ZiL +bi Z|S] A aiZiL A bi ZiS

PF(’):laschez ihs _ =g is +8O s (21)
A0t o(t) 5t L 50t S ot),t ’
[a7z, + b ()Zis] - a4g b ()Zis
i st il s i s

where 4z / . 4z and __b'zg/ . b*Yzs are Paasche price indexes
of land and structures, which are weighted by = . ) +
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5. Empirical evidence

5.1 The data set

The data set we will use was provided by the Dais$ociation of real estate agents. It
contains residential property sales for a smajyl (wopulation is around 60,000) in the

northeastern part of the Netherlands, the cityASf and covers the first quarter of 1998

to the second quarter of 2008. Statistics Nethdddras geocoded the dafde decided

to exclude sales on condominiums and apartmentg $ire treatment of land deserves
special attention in this case. The resulting totahber of sales in our data set during
the ten-year period is 6,397, representing apprataiy 75% of all residential property

transactions in “A”.

The data set contains information on the time &#,9sansaction price, a range
of characteristics for the structure, and chargttes for land. We included only three
structural characteristics in our models, i.e.plesfioor space, building period and type
of house. For land, we used plot size and postoodegitude/longitude. After removing
44 observations with missing values, transactiaoeprbelow €10,000, more than 10
rooms, or ratios of plot size to structure sizeafles floor space) larger than 10, we were
left with 6,353 observations during the samplequri

Table Al in the Appendix reports summary statisbigsyear for the numerical
variables. The average transaction price signiflgancreased from 1998 to 2007 and
then slightly decreased during the first half of 20
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(MGWR). The last model was estimated by mixed gaplgically weighted regression
using the software package GWRA.0.

Considering that the property transactions aresenly distributed across space,
we used the adaptive bi-square function to consth&weighting scheme. In this case,
the bandwidth is generally referred to as the wimde, and its selection procedure is
equivalent to the choice of the number of nearegghibors. We derived the optimal
bandwidth using the ‘Golden Section Search’ apgrdessed on minimizing CV scores
in a window-size range of 10% to 90%. There is igus optimal window size for each
annual sample in terms of prediction power; the $£dres indicated that it was around
10% for most of the years, except for 1998 (51%)12(36%), and 2003 (29%). Yet,
for the construction of price indexes, we wouldfere fixed window size for all years,
especially since the number of sales is almostlg\saread across the whole period. So
we have chosen a window size of 10% for every yleading to 60 nearest neighbors
that were used in the estimation of the MGWR madels

To compare the performance of the three propelittepnodels, two statistics
were calculated, the Corrected Akaike Informatiatigdion (AICc) and the Root Mean
Square Error (RMSE). The AICc takes into accouatttade-off between goodness-of-
fit and degrees of freedom and is defined for MGWétels by’

- - + (S
=2 In(")+ In2 )+ Tr(S)
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the OLSD model. The same ranking is found if theFEMs used to assess the models.

These results suggest that land prices indeeda@pss space and that MGWR does a
good job in estimating such nonstationarity.

Table 1: Model estimation and comparison

OLS OLSD MGWR
AlCc  RMSE AlCc dAIGo, RMSE dRMSk, AlCc dAIC,; RMSE dRMSE;
1998 6666.26 101.77 6629.82 -36.44 96.96 -4.81 6599.71 -30.11 91.18 -5.78
1999 7145.61 155.52 7110.61 -35.00 148.37 -7.15 7054.04 -56.57 136.98 -11.39
2000 7380.38 166.91 7342.49 -37.89 158.99 -7.92
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Table 2 contains summary statistics for the prieegguare meter of land for the
transacted properties, estimated using MGWR. Tleeage estimated land price is quite
volatile; the change over time differs greatly froinat of the average transaction price
of the properties (see Table A.1 in the AppendBdllowing a sharp increase in 1999,
the estimated average land price peaked in 20@&renced a dramatic drop in 2003,
and then increased again. The value in the stayBag 1998 of approximately 45 euros
per square meter of land is extremely low. This has
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5.3 A comparison of different hedonic price indexes
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Figure 2: Chained hedonic imputation Paasche houggice index
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city of “A” appreciated less compared to the reflsth@ country, or our indexes better
adjust for quality changes. We think that the sda@ason is more important.

The picture changes when we look at the Fisherxiesléor the price of land in

20



to 1998=100, is also plotted in Figure 5. During fthist half of the sample period, our
price indexes for structures exhibit roughly thenedrend as the construction cost index.
During the second half of the sample period, thestroction cost index flattens, but the
structures price indexes keep rising. A constructiost index does not necessarily have
to be identical to an implicitly derived price indir structures, and it may suffer from

some measurement problethbut this divergence is nevertheless puzzling.

Figure 5: Chained hedonic imputation Fisher price mdexes for
structures and official construction cost index

180 ‘
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Figure 6: Estimates of value shares of land and sictures,
OLSD-based

0.9
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variance inflation factor (VIF) for the estimatedrameters for the ratio of plot size and
structure size did not point to significant multioeearity either.

The use of the property price per square meteiviofgl space as the dependent
variable in the models (i.e. the normalizationghkreduced multicollinearity, but it can
have led to instability of the parameter estimédedand and structures if it resulted in
‘classical’ heteroskedasticity where the regressesiduals grow with increasing ratios
of plot size to structure size. For the OLS and OlrBodels, the Breusch-Pagan test did
indeed point to heteroskedasticityA related problem is the relatively small variatio
in the plot size to structure size ratios.

Scatterplots of the normalized prices against tbegze to structure size ratios
showed some extreme outliers; most of them arbarhigher ranges of the normalized
prices and ratios. To check if deleting outliersuldostabilize the indexes, we removed
all observations with ratios of plot size to stwretsize larger than 5 (instead of 10), re-
ran OLSD regressions and calculated chained dauipetation price indexes again.
The new OLSD-based Fisher indexes for land andtsiress are depicted by the dashed
lines in Figure 7. Compared with the initial indexte volatility is slightly reduced, but
the trends have changed dramatically: the new tstr@igrice index sits above the old
index and the new land price index sits far belbe old one. This troubling result is
touched upon in section 6 below.

6. Discussion and conclusions

Land is typically not explicitly included in hed@nmodels for house prices, which can
bias the results. Ignoring spatial nonstationasftiand prices can also generate bias. As
far as we know, the present paper is the firsihgiteto account for nonstationarity of
land prices in the construction of hedonic impatathouse price indexes using spatial
econometrics. We linearized the ‘builder's modebmosed by Diewert, de Haan and
Hendriks (2015), allowed the price of land to vatythe individual property level, and
estimated the model for the normalized propertgego(i.e., the price of the property per
square meter of living space) by MGWR, a semi-patacmethod, on annual data for

13

23



the Dutch city of “A”. We then constructed chainetputation Laspeyres, Paasche and
Fisher indexes and compared them with price indbassd on more restrictive models:

a model with no variation in land prices and a madgere land prices can vary across
postcode areas, both estimated by OLS.

The Fisher house price indexes were quite inseaditi the choice of model, but
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The probable cause is that the price of land i®ddent on the size of the land plot: the
price per square meter of land tends to fall wittreasing plot size. Diewert, de Haan
and Hendriks (2015) adjusted for this type of noedirity using linear splines to model
the price of land. In future work we want to modifyr models in the same spirit, either
by using splines as well or by explicitly specifgisome nonlinear function.

What worries us most is the extreme volatility leé MWGR-based indexes for
land and structures. The MWGR method makes useicdgpof neighboring properties,
and since neighboring properties may be expectéhve similar plot sizes, our results
are unexpected and counterintuitive. We lack araggtion of this finding, but it does
suggest that the semi-parametric MGWR approachugsexlinherently unstable results.
Thus, while the MWGR model outperforms the otheo twodels in terms of statistical
criteria (AICc and RMSE) and produces a house pridex that is very similar to the
OLSD model, it aggravates instability and doessesm appropriate for estimating the

land and structures components.
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