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1. Introduction

Understanding sources of economic growth has long beenesésttto academics and

policy makers. A better understanding of the determinants of value added growth can
provide insights into the potential for policies to address inefficiencies and a deeper
understanding of the drivers of productivity, a topic of heightened recent interest given



inefficiency. Our m#éodological approach does this.has tle advantagethat it does

not involve any econometric estimatiamdinvolves only observable data on input and
output price and quantities for the sector. Thus it is simple enough to be implemented by
statistical agencies.

Anotherpositive feature of






efficiency. DEA orData Envelopment Analysis the term used by Charnes and Cooper
(1985) and their caevorkers to denote an area of analysis which is called the
nonparametric approach to production théamythe measurement dfe efficiency of
productiorf by economists.

The cost constrained value added function has some interesting mathematical properties.
For fixed w and x, Bp,w,x) is a convex and linearly homogeneous function bFer

fixed p and w, Rp,w,x) is nondecresing in x.If S'is a convex set, then'(®,w,x) is also
concave in x. For fixed p and x{(Rw,x) is homogeneous of degree 0 in w.

It is possible to get more insight into the properties if Rie introduce the sector’s









prices and quantities equal to the period input prices andquantitiesw' * and **
(which gives rise to a Laspeyres type ougmite inde} and another choice where we
use the period technology and set the referennput prices andjuantities equal to the
period tprices and quantities'and X (which gives rise to ®aasche type optit price
indeX. We dfine these special casdg' and P as follows:

(14) Dt { th 1,pt,Wt l,Xt 1,t 1) {Rt l(pt,Wt l,Xt 1)/Rt l(pt 1,Wt 1,Xt l) :
(15) B { op' Lpwi Xt R WL X)R(P L w X,

Since both oytut price indexes, \Dand B, are equally represetitze, a single estimate
of outputprice change should be set equal to a symmetric avefdlgese two estimates.
We choose the geometric mean as our preferred symmetric avarabehus our
preferred overall measure of put price growth is the following ovalt output price

index D12

(16) D { [ Qt Bt]lIZ )

Our second family of factors that explaialue added growth is a family of input quantity
indexes, Ex" * X, w):

(17) B X w) {w Rw okt

The input quantity index (€ *,x',w) defined by {7) is equal ta ratio of simple linear
aggregates of the observed input vectors for perialisnd t, X' and %, where we use

the vector of strictly positive input prices w >x 8 weights. We note that this family of
input quantity index does not aisthe cost constrained value added function. An
alternative definition for a family of input quantity indexes that uses the cost restricted
value added function for period s and reference vectors p and wxis »Ep,w,s) {

R(p°, W x)/R3(p°w°x" 1).23 If the period s technology set is a cone, then using (11), it can
be seen thatE(x' ' x',p,w,s) = w¥w x* = Ex' ' x,w). In the general case where the
period s technology is not a cone, the input growth measxe*,€,p,w,s) will also
incorporaé the effects of nonconstant returns to schiethis general case, it seems
preferable to isolate the effects of nonconstant returns to scale and the use of the simple
input quantity indexes defined by (17) will allow us to do this as will be seen below.

It is natural to single out two special cases of the familymitiguantityindexes defined
by (17): one choice where we use the periotihput prices Wwwhich gives rise to the
Laspeyresnput quantityindex E' and another choice where et he referencénput

12 Choosing the geometric mean leads to a measure of output price inflation that satisfies the time reversal
test; i.e., tke resulting index has the property that it is equal to the reciprocal of the corresponding index that
measures price change going backwards in time rather than forward in time; see Diewert (1997) and
Diewert and Fox (2017) on this point.

13The counterpart to this family of input quantity indexes was defined by Sato (1976; 438) and Diewert
(1980; 456) using value added functions (i.e., the funct@s,x)) with the assumption that there was no
technical progress between the two periods being compared.



pricesequal to W(which gives rise to thPaaschanput quantityindex E'. Thus define
these special caseg &d E as follows:

(18) E {w' 7wt %t
(19) B {w "¥w' %!,

Since both input quantityndexes, E' and E', are equally representative, single
estimate of input quantityhange should be set equal to a symmetric average of these two
estimatesWe choose the geometric mean as our preferred symmetric average and thus
our preferred overall measure of inputagtity growth is the following overall input
quantityindex &

(20) E { [ Et Et]l/Z'

Our next family of indexes will measure the effectscost constrained value added of a
change in input prices going from periodL.tto t. We consider a family fomeasures of

the relative change in cost constrained value added of the f{pywWik)/R(p,w *,x).

Since R(p,w,x) is homogeneous of degree 0 in the components of w, it can be seen that
we cannot interpret %p,w,x)/R(p,w *,x) as an input price inde If there is only one
primary input, R(p,w,x)/R(p,w *x) is iderically equal to unity and this measure of
input price change will be independent of changes imptlee of the single inputt lis

best to interpret Rp,w,x)/R(p,w *x) as measuripthe effects on cost constrained value
added of a change in the relative proportiohgrimary inputs used in productiar in

the mix of inputs used in production that is induced by a change in relative input prices
when there is more than one primanput. Thus define the family of input mix indexes
' whp,x,s) as follows?

(21) ' twhp,x,s) {R¥(p,W,x)/R(p,w 1 x).

As usual, we will consider two special cases of the above family of input mix indexes
Laspeyres case and a Paasche caseetkr, the Laspeyres caséwill use the period t
cost constrained value added function and the peribdeference vectors' pand x*
while the Paasche casp will use the use the period1 cost constrained value added
function and the periodreference vectors pnd x:

(22) *l-_]PPt { \aWt l,Wt,pt l,Xt,t) {Rt(pt 1,Wt,Xt)/Rt(pt 1,Wt l,Xt);

14 This index is Fisher's (1922) ideal input quantity index.

51t would be more accurate to say théw' 3,w',p,x,s) represents the hypothetical proportional change in
cost constrained value added for the period s reference technology due to the effedtarmfeairt the

input price vector from W' to w when facing the reference net output prices p and the reference vector of
inputs x. Thus we shorten this description to say tliman “input mix index”. If there is only one primary
input, then since R.w,x) is homogeneous of degree 0 in w, it can be seen that,w'p,x,s) {
R3(p, W X)/R¥(p,W 1,x) = [(w1)° R¥(p,1,X))/[(w' H° R¥(p,1,x)] = 1; i.e., if there is only one primary input,
then the input mix index is identically equal to 1. For altereativix definitions, see Balk (2001) and
Diewert (2014; 62).



10

(23) aLLt { ‘awt l,Wt,pt,Xt l,t 1) {Rt 1(pt,Wt,Xt l)/Rt l(pt,Wt l,Xt l).

The reason for these rather odd looking chofoeseference vectors will e justified
below in more detail bubasically, we make these choices in order to have value added
growth decompositions into explanatory factors that are exact without making restrictive
assumptions on the technology sets.

As usual, the above two indexare equally representative and so it is natural to take an
average of these two measures. We choose the geometric mean as our preferred
symmetric average and thus our preferred overall measure of input mix change is the
following overall input misindex &

(24) 9{[ Jpe .12

We turn now to the effects on cost constrained value added due to the effects of technical
progress; i.e., as time marches on, new techniques are developed that allow increased
outputs using the same inputs or
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index of input growth is 'EThus define the period t TFP growth raf&FPG, for the
production unit as follows?

(35) TFPG {{[p""yp' *y)/ BV E= HIGW



(40) TFP=[p' Yip' YJ[A'B]= CD'E'T; t=2..T.

In the following section, we explain a practical method for obtaining estimates for the
cost constrained value added fuontfor a sectar
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= wWx/mins{w “XIp°y:s=12,..t}
= W/§w,p)

where we define the periochbnparametriaunit cost functiort(w,p) as follows:
(44) é(w,p) {mins{w "Xp~y:s=12,..th.

Thus we have an explicit functional form for the unit cost functidwp) that was
defined earlier by (10) abovét can be seen that(w,p) defined by (44) is a linear
nondecreasing function of w (and hence is linearly homogeneous and concave in w which
iS a necessary property for unit cost functions) and is convex and homogeneous of degree
minus one in p.

Now we are in a position to apply the decompositions of value added growth (34), of TFP
growth (35) and for the level of TFP (40), using the specific functimmal for a sector’s

cost constrained value added function defined by (43). However, witisthenption of
constant returns to scale in production, the returns to scale growth faistédeGtically

equal to one and so this faci@nishes from the decompositions of value added and TFP
growth defined by (34) and (35) abovie levels return to scale growth factdriD(40)

is also identically equal to one and hence vanishes from the decomposition (40).

In the following two gctionswe return to the more general model that was deesdrin
Section 3,but we assume that we hawenstructedcost constrained value added
functions forthe K sectors.We will study two alternative approaches to the problems
associated with aggregatinges sectors. For brevity, we refer to the aggregate of the K
sectors as the national economy.

5. National Value Added Growth Decompositions: The Sectoral Weighted Average
Approach

In this first approach to deriving a decomposition of national valuedagdawth into
explanatory components, we simply use weighted averages of the sectoral
decompositions.

Supposewe have K t2 sectors and we apply tilsectoral value added decomposition
methodologythat was explained irestion 3to each sectoDenote thenet output vector,
primary input vector and the corresponding price vectors for sector k and perioff,t by y
X<, o, w for k = 1,...,K and t = 1,..., 7% Denote the period t nominal value added for
sector k by § {p“~y'for k = 1,...K and t = 1,...,T. Define the sector k decomposition
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1,..,.Kandt=2,.,T. Then the sectazalinterparts to the decompositions (34), (35) and
(40) are as follows fork = 1,....Kand t=2,...,T:

(45) VN = O B E W
(46) TFPG' {[VMAM 1/D B = 5 & K W,
(47) TFP'  =[V“W“)/A BY = C'DME“ T¢.

Define the period t national value adde'tag the sum of the period t sectoralue added
for each sector:

(48) V { 61V t=1,.,T.
Define theperiod t share of national value addkxt sector k, &, as follows:

(49) &' {VN'; k=1,.,K t=1,.,T.
Using definitions (48) and (49), it is easy to see that we have the following exact
decompositionof period t national value added gréwinto sectoral explanatory

components:

(50) V
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The above decompositions are useful if we want a decomposition of aggvagise
added growth into sectorabntributionsbut they do not lead toraple decompositions
into national explanatory factors for value added efficiency, output price effects, input
quantity effects and so dfiIn order to accomplish this task, we resort to the use of
approximations to the exact decompositions defined by (50) andB@fbye introdeing
these approximations, we first defiperiod tnational weighted averages of the sectoral
explanatory factors. The period t logarithms of these national explanatory factors
defined as follows for t = 2,...,T:

(52) In D { 6=1F (1/2)(&" + & Hin O ;
(53) In E{ 6= (1/2)(S" + & Yn B ;
(54) In T { 6=F (U2)( + ' Hin ¥
(55) In B { 6=1F (1/2)(" + & Hin & ;
(56) In H { 6= (L/2)(& + < Yin K ;
(57) In W{ 6= (1/2)(S" + & Hin W.

Thus D*is a weighted geometric average of the period t sectoral value added price
indexes 0! where the weight for sector k in period t is (1/9)fs<' %), the arithmetic
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=In'Brin E+In F+In E+In H+In W

where the dst equality follows using definitions (587). Exponentiating both sides of
(58) leads to the following approximate decomposition of period t national value added
growth into explanatory factofer t = 2,...,T:

(G VAV' T | D BX & H W

A measure operiod t national real value added growith[v/v' ]/ D¥ which is national
nominal value added growtfyw * divided by the national value added price ind®&% A
measure operiod t national primary input growtts E* Period t national Total Factor
Productivity Growth TFPG, canthenbe defined as national real value added growth
divided by national primary input growth:

(60) TFPG {[VINV' 1]/ D* B | 5* & 1 W t= T

where the approximate equality in (60) follows from the approximate equality (59).
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The approximate national TFP growth decomposition that corresponds to (62) is the
following one:

(63) TEPG {[vINV' 1)/ D* B* | W: t=2,.T.
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6. National Value Added Growth Decompositions: TheNational Cost Constrained
Value Added Function Approach

In our second approach to providing decompositions of national value added growth and
national Total Factor Productivity growthwe will utilize a general approach






(69) H{ et/et 1 = [ 6(=1K \yt ekt]/[ a(:lK \y,t 1ek,t l] .
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(73) aLth {Rk,t l(pkt’wkt’xk,t l)/Rk,t l(pkt,wk,t l’xk,t l).

The national period t input mix indexvhich is acounterpart ta¢he sectoral input mix
indexes defined by (72) is defined as follows:

(74) &r {R(E "W X)R(E 1w XY t=2,..T
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Thenational counterpart to the sectoral indexes defined by (d&fiised as follows:

(80) W { Rt(pt l,Wt l,Xt)/Rt l(pkb,wt 1,Xt) . . | | t= 2’.",_1_
— l@lK Rkt(pk,t 11Wk,t l’th)/ 6=1K Rl,t l(pl,t l’WI,t 1,Xlt)
=6



(84) G‘(t {[Rk,t l(pk,t l’Wk,t l,th)/R

25
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(95) V' = D' B ' G HW
(96) VW' 1= DE S G HW

We conclude this section by deriving a useful approximation to the exact decomposition
defined by (96).

Recall the exact decompositions for' &nd ' defined by (70) and (71). Approximate

the theoretical sector k, period ¥ shares\' *in (70) by the observed sector k, period
t kit 1

K Then

approximate the resulting weighted arithmetic mean €' 1 QX
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show that an approximation to the logarithm gfisGn & | &= ' In &. Thus &

defined by (55) in the previous section is an approximatioh {d & G]"2.

Equation (69) above provided an exact expression'faheHate of growth of national
value added efficiencyli= [ G Ve[ 6% V! 1 ). Approximat the theoretical
value added output share§ and V' in the numeratoand denominatoof Hby the
arithmetic average of their observed counterparts, (¥/2)(s*' 1).*° We thenhave the
following approximation for “H
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7. TFP Growth for the U.S. Corporate Nonfinancial Sector, 1962014

The US Bureau of Economic Analysis (BEA), in conjunction with the Bureau of Labor
Statistics (BLS) and the Board Gfovernors of the Federal Reserve, have developed a
new set of production accounts (the Integrated Macroeconomic Accounts or IMA) for
two major private sectors of the US economy: the Corporate Nonfinancial Sector and the
Noncorporate Nonfinancial Sectorh@ Balance Sheet Accounts in the IMA cover the
years 1962014 but do not provide a decomposition of output, input and asset values
into price and quantity components. Diewert and Fox (2pL@@vided such a
decomposition and we will use their data in gtisdy.

In this section, we will use their output and input data for the U.S. Corporate
Nonfinancial Sectofwhich we denote aseStor 1)for the 55 years 196P014. The year t
output y' is real value addédand the corresponding year t value addedattsflis
denoted as’p The ten inputs used by this sector are labour and the services tfpgse

of asset”” The output and input data are listed in Apgie A of Diewert and Fox
(2016b).The year t input vectdor this sectoiis X' { [x1\x",....xq"] where %™ is year

t labour input measured in billions of 1960 dollars agti.x,x¢" are capital service
inputs measured in billions of 1960 capital stock dollars. The corresponding year t input
price vectorfor Sector lis W' { [wi™w.™,...,wi™] for t = 1960,...,2014.

Our year t technology set foe&tor 1, &, is defined as the free disposal cone spanned by
the observed outpudnd input vectors for the sector up to and including the year t
observation. For convenience, we label the y&a6902014 as years-35 in definitions
(100)-(104) below. Thus is defined as follows:

(100) S {{(y,X):y d 61 y* @x t 64 x°Q @10, ..., Q t OF; t=1,..55.

We adapt definition (41) cfection 4 to the present situation atedine theSector lyear
t
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Using the cost constraidevalue added functions defined by (1,0%e can readily
calculate the &ctor 1 counterparts to the year t generic value added growth
decompositions (32)33) that we derived in section 3 above. Using maseninotation

for the Sﬁ‘e‘gor 1 prices and quatsis, these decompositions can be written as follows for t
=2,..,55

(102) Vlt/vl,t 1_ pltylt/pl,t lyl,t 1_ |]_.i Blt Elt J_PPlt Wt :
(103) V’[t/Vl,t 1 — Il] Qlt Elt j’Lth Wt :
(104) Vvt t= HD'B' ' W,

As in section 3, we daefe year t Total Factor Productivity Growth foecor 1 as value
added growth divided by output price growtH tilmes input quantity growth™E

(105) TFPG' { VNV 1/ B'B] = # 3 W, t=1961,.,2014.

Since we have only a single value added outptit,{ p/p*'* can be interpreted as a
Fisher output price index and'jiw*! ')/ B'can be interpreted as a Fisher output quantity
index going from year tl to year t.E'is the Fisher input quiity index going from year

t 1 to year t. Thus TFP&is equal to a conventional Fisher productivity growth index in
this one output case.
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32

It can be verified that the TFP gvth decomposition defined by (10%olds; i.e., for
each year t, nonparametric TFP growth TERGuals the product of value added
efficiency growth Y4imes the year t input mix growth factdf times the yeartechnical
progress measure'. Wcan be seen that the input mix factors are all very close tdtone
can also be seen when value adefiidiency in year t, B is less than one, then the year t

technical progress measuré alivays eq



33

Table 2: U.S. Corporate Nonfinancial Value Added Year t Levels ¥v'**° Output Price
LevelsAY, Input Quantity LevelsBY, TFP Levels TFP", Input Mix Levels C*, Value Added
Efficiency LevelsE™ and Technial Progress LevelsT ™ where all Levels are Relative to 1960

Yeart vijyLioe0 Al BT TEPT oL ET TH
1960 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000 1.00000
1961 1.02696 1.00305 1.00469 1.01906 1.00000 1.00000 1.01906
1962 1.12113 1.00954 1.03945 1.06839 1.00000 1.00000 1.06840
1963 1.19615 1.01454 1.06476 1.10730 1.00000 1.00000 1.10730
1964 1.29190 1.02388 1.09407 1.15329 1.00000 1.00000 1.15330
1965 1.42514 1.04188 1.14350 1.19620 1.00000 1.00000 1.19622
1966 1.57518 1.07230 1.20194 1.22217 1.00000 1.00000 1.22220
1967 1.65648 1.09623 1.23486 1.22368 1.00000 1.00000 1.22370
1968 1.81864 1.13024 1.27771 1.25934 1.00000 1.00000 1.25937
1980 1.97106 1.17785 1.32956 1.25864 0.99994 0.99950 1.25937
1970 2.02656 1.22161 1.32822 1.24899 0.99888 0.99287 1.25937
1971 2.18245 1.26574 1.33802 1.28866 0.99894 1.00000 1.29004
1972 2.43141 1.31076 1.39306 1.33157 0.99894 1.00000 1.33300
1973 2.7302 1.38762 1.45963 1.34803 0.99894 1.00000 1.34947
1974 2.95307 1.52395 1.47611 1.31275 0.99860 0.97416 1.34947
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Note that the final level of TFP in 2014, 2.46873, is slightly less than the level of
technology in 2014, which was 2.47559. This small difference is explained by the fact
that the cumulative ing mix level, 0.99725, is slightly less than 1 in 2014. We plot

TFPY, C" E" and T'in Figure1.

It can be seen that there was a substantial decline in value added efficiency over the years
20062009 and in fact, TFP has grown at a slower than averag
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Diewert and Fox (2018bThe year t input vector for this sector & &[x:% x2%,..., x5
where x? is year t labour input measured in billions of 1960afslland ¥.,...,xs> are
capital service inputs measured in billions of 1960 capital stock dollars. The
corresponding year t input price vecfor sector 2is W* { [w:?,w,?,....wis2] for t =
1960,...,2014.

Our yar t technology set foreégtor 2 S, is defined as the free disposal cone spanned by
the observed output and input vectors for sectarp2to and including the year t
observation.Again for convenience, we label the years 12604 as years 35 in
equations (107j108) below. Thus 8 is defined as follows:

(107) $' {{(y.x):y dG&y* Q@xt 64X Q @10, .. QtO} t=1,..,55.

We adapt definition (41) in section 4 to the present situation and define the Bgetor
t cost constrained value added functiBfi(p,w,x) for p > 0, w >> @ and x >> @s as
follows:

(108) R(p,w,x) {maxy; {py: (y,2) S Wz av X} t=1,..,55

= max{py>®w xwWx:s=1.2,..t






Th

37



Table 4:
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Table 5: U.S. National Nonfinancial Value Added Growth ¥v' *, Output Price Growth D* Input Quantity
Growth EX TFP Growth TFPG'® Input Mix Growth Factors J% Value Added Efficiency Growth
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From Table 6, it can be seen that the final level of approximate national TFP relative to
1960 was 2.33486 which is somewhat below the final level of technology, which was
2.35219. This difference is explained by thelow unityfinal level of the input mix

explanatory factor, €
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As was noted in the previous section, the year t sector k explanatory growth fatfors, D
B ¥, & and W are listed in Tables 1 and 3 above. Napply definitions (69Y92) in

order to define the year t national growth factof E J & Hand WThe year t exact
decomposition of national value added growth is given by (96), which we repeat here as
equations (113):

(113) V' ' = D E I G HW t=1961,...,2014.

Define the national year t TFP growth factas TFPG { [v'V' ]/ DE This definition
and equations (113) imply that we have the following national exact grb®th
decomposition into explanatory factors:

(114) TFPG {[vIM' 1)/ D E= I GEHW t = 1961,...,2014.
The growth decomposition components that appear in) @#disted in Table.7

The arithmetic means of the growth rates over the 54 years2l8@llare listed in the

last row of Table 7?1t can be seen that the average rate of national TFP growth over
these years was 1.59 percent per year, just below the average rate of techgresis,

which was 1.60 percent per year. The results in Table 7 are very similar to the results
listed in Table 5 above. Again, technical progress growth was not present for 8 years:
1974, 1975, 1979, 1980, 1982, 1989, 2007 and 2009. For those keaiatet of growth

of value added efficiency was below unity and this translated into negative rates of TFP
growth for those years. The national exact input mix and returns to scale growth factors,
the Jand G are all very close to unity. The exact edyah (114) was not quite exact

due to rounding errors: the absolute value of the difference betweer! afR®& G H W

was always less than 0.00003 and the mean differencedva@90027.

To conclude this section, apply definitions (34)) to natonal value added in order to
obtain the following exact levels decomposition for national Total Factor Productivity in
year t relative to the year 1960, TEP

(115) TFP= VNVPY[A'B = CD'E'T'; t = 1960,...,2014.
Table 8 lists the various levels that appear in (115) along with the variable' Gtteick

is defined as TFRinus CD'E' T'. It can be seen that Chétkquite small although the
rounding errors build up as time goes on.

52The mean for\*'is for all 55 obserations.
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11. Conclusion

We have derived decompositions of nominal value added gri@anthTFP growth) for a
single sector into explanatory factors. We also two alternative appraactedatingthe
sectoral decompositions to a national growth decomposdieveighted average sectoral
approach and a national value added function approach.
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