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1. Introduction 
 
Understanding sources of economic growth has long been of interest to academics and 
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inefficiency. Our methodological approach does this. It has the advantages that it does 
not involve any econometric estimation, and involves only observable data on input and 
output prices and quantities for the sector. Thus it is simple enough to be implemented by 
statistical agencies.   
 
Another positive feature of 
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efficiency. DEA or Data Envelopment Analysis is the term used by Charnes and Cooper 
(1985) and their co-workers to denote an area of analysis which is called the 
nonparametric approach to production theory5 or the measurement of the efficiency of 
production6 by economists. 
 
The cost constrained value added function has some interesting mathematical properties. 
For fixed w and x, Rt(p,w,x) is a convex and linearly homogeneous function of p.7 For 
fixed p and w, Rt(p,w,x) is nondecreasing in x. If St is a convex set, then Rt(p,w,x) is also 
concave in x.  For fixed p and x, Rt(p,w,x) is homogeneous of degree 0 in w.        
 
It is possible to get more insight into the properties of Rt if we introduce the sector’s 
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t �{ et/et��1 = [pt�˜yt/Rt (pt,wt,xt)]/[p t��1�˜yt��1/Rt��1(pt��1,w t��1,xt��1)].                                          Thus if �H

t

 > 1, then value added efficiency has improved going from period t��1 to t w h e r e a s  i t  h a s  fallen if �H
t < 1.   Notice that the cost constrained value added function for the production unit in period t, R

t

(p,w, x), depends on four s e t s  o f  v a r i a b l e s :    �x T h e  t i m e  p e r i o d  t  a n d  t h i s  i n d e x  t  s e r v e s  t o  i n d i c a t e t h a t  t h e period t technology set S

t is used to define the period t value added function;  �x The vector of output prices p that the production unit faces; �x 
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prices and quantities equal to the period t��1 input prices and quantities wt��1 and xt��1 
(which gives rise to a Laspeyres type output price index) and another choice where we 
use the period t technology and set the reference input prices and quantities equal to the 
period t prices and quantities wt and xt (which gives rise to a Paasche type output price 
index). We define these special cases �DL

t and �DP
t as follows: 

 
(14) �DL

t �{ �D(pt��1,pt,wt��1,xt��1,t��1) �{ Rt��1(pt,wt��1,xt��1)/Rt��1(pt��1,wt��1,xt��1) ; 
(15) �DP

t �{ �D(pt��1,pt,wt,xt,t)           �{ Rt(pt,wt,xt)/Rt(pt��1,wt,xt). 
 
Since both output price indexes, �DL

t and �DP
t, are equally representative, a single estimate 

of output price change should be set equal to a symmetric average of these two estimates.  
We choose the geometric mean as our preferred symmetric average and thus our 
preferred overall measure of output price growth is the following overall output price 
index, �Dt:12 
 
(16) �Dt �{ [�DL

t �DP
t]1/2 .  

 
Our second family of factors that explain value added growth is a family of input quantity 
indexes, �E(xt��1,xt,w): 
 
(17) �E(xt��1,xt,w) �{ w�˜xt/w�˜xt��1. 
 
The input quantity index �E(xt��1,xt,w) defined by (17) is equal to a ratio of simple linear 
aggregates of the observed input vectors for periods t��1 and t, xt��1 and xt, where we use 
the vector of strictly positive input prices w >> 0N as weights. We note that this family of 
input quantity index does not use the cost constrained value added function. An 
alternative definition for a family of input quantity indexes that uses the cost restricted 
value added function for period s and reference vectors p and w is �E*(xt��1,xt,p,w,s) �{ 
Rs(ps,ws,xt)/Rs(ps,ws,xt��1).13 If the period s technology set is a cone, then using (11), it can 
be seen that �E*(xt��1,xt,p,w,s) = w�˜xt/w�˜xt��1 = �E(xt��1,xt,w). In the general case where the 
period s technology is not a cone, the input growth measure �E*(xt��1,xt,p,w,s) will also 
incorporate the effects of nonconstant returns to scale. In this general case, it seems 
preferable to isolate the effects of nonconstant returns to scale and the use of the simple 
input quantity indexes defined by (17) will allow us to do this as will be seen below.     
 
It is natural to single out two special cases of the family of input quantity indexes defined 
by (17): one choice where we use the period t��1 input prices wt which gives rise to the 
Laspeyres input quantity index �EL

t and another choice where we set the reference input 

                                                 
12 Choosing the geometric mean leads to a measure of output price inflation that satisfies the time reversal 
test; i.e., the resulting index has the property that it is equal to the reciprocal of the corresponding index that 
measures price change going backwards in time rather than forward in time; see Diewert (1997) and 
Diewert and Fox (2017) on this point. 
13 The counterpart to this family of input quantity indexes was defined by Sato (1976; 438) and Diewert 
(1980; 456) using value added functions (i.e., the functions �3s(p,x)) with the assumption that there was no 
technical progress between the two periods being compared. 
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prices equal to wt (which gives rise to the Paasche input quantity index �EP
t. Thus define 

these special cases �EL
t and �EP

t as follows: 
 
(18) �EL

t �{ wt��1�˜xt/wt��1�˜xt��1 ; 
(19) �EP

t �{ wt�˜xt/wt�˜xt��1 . 
 
Since both input quantity indexes, �EL

t and �EP
t, are equally representative, a single 

estimate of input quantity change should be set equal to a symmetric average of these two 
estimates. We choose the geometric mean as our preferred symmetric average and thus 
our preferred overall measure of input quantity growth is the following overall input 
quantity index, �Et:14 
 
(20) �Et �{ [�EL

t �EP
t]1/2.  

 
Our next family of indexes will measure the effects on cost constrained value added of a 
change in input prices going from period t��1 to t. We consider a family of measures of 
the relative change in cost constrained value added of the form Rs(p,wt,x)/Rs(p,wt��1,x). 
Since Rs(p,w,x) is homogeneous of degree 0 in the components of w, it can be seen that 
we cannot interpret Rs(p,wt,x)/Rs(p,wt��1,x) as an input price index. If there is only one 
primary input, Rs(p,wt,x)/Rs(p,wt��1,x) is identically equal to unity and this measure of 
input price change will be independent of changes in the price of the single input. It is 
best to interpret Rs(p,wt,x)/Rs(p,wt��1,x) as measuring the effects on cost constrained value 
added of a change in the relative proportions of primary inputs used in production or in 
the mix of inputs used in production that is induced by a change in relative input prices 
when there is more than one primary input. Thus define the family of input mix indexes 
�J(wt��1,wt,p,x,s) as follows:15 
 
(21) �J(wt��1,wt,p,x,s) �{ Rs(p,wt,x)/Rs(p,wt��1,x). 
 
As usual, we will consider two special cases of the above family of input mix indexes, a 
Laspeyres case and a Paasche case. However, the Laspeyres case �JL

t will use the period t 
cost constrained value added function and the period t��1 reference vectors pt��1 and xt��1 
while the Paasche case �JP

t will use the use the period t��1 cost constrained value added 
function and the period t reference vectors pt and xt:  
 
(22) �JLPP

t �{ �J(wt��1,wt,pt��1,xt,t)     �{ Rt(pt��1,wt,xt)/Rt(pt��1,wt��1,xt); 
                                                 
14 This index is Fisher’s (1922) ideal input quantity index. 
15 It would be more accurate to say that �J(wt��1,wt,p,x,s) represents the hypothetical proportional change in 
cost constrained value added for the period s reference technology due to the effects of a change in the 
input price vector from wt��1 to wt when facing the reference net output prices p and the reference vector of 
inputs x. Thus we shorten this description to say that �J is an “input mix index”. If there is only one primary 
input, then since Rs(p,w,x) is homogeneous of degree 0 in w, it can be seen that �J(wt��1,wt,p,x,s) �{ 
Rs(p,wt,x)/Rs(p,wt��1,x) = [(w1

t)0 Rs(p,1,x)]/[(w1
t��1)0 Rs(p,1,x)] = 1; i.e., if there is only one primary input, 

then the input mix index is identically equal to 1. For alternative mix definitions, see Balk (2001) and 
Diewert (2014; 62).   
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(23) �JPLL
t �{ �J(wt��1,wt,pt,xt��1,t��1) �{ Rt��1(pt,wt,xt��1)/Rt��1(pt,wt��1,xt��1). 

 
The reason for these rather odd looking choices for reference vectors will be justified 
below in more detail but, basically, we make these choices in order to have value added 
growth decompositions into explanatory factors that are exact without making restrictive 
assumptions on the technology sets. 
 
As usual, the above two indexes are equally representative and so it is natural to take an 
average of these two measures. We choose the geometric mean as our preferred 
symmetric average and thus our preferred overall measure of input mix change is the 
following overall input mix index, �Jt: 
 
(24) �Jt �{ [�JLPP

t�JPLL
t]1/2.  

            
We turn now to the effects on cost constrained value added due to the effects of technical 
progress; i.e., as time marches on, new techniques are developed that allow increased 
outputs using the same inputs or 







 13 

index of input growth is �Et. Thus define the period t TFP growth rate, TFPGt, for the 
production unit as follows:19 
 
(35) TFPGt �{ {[p t�˜yt/pt��1�˜yt��1]/�Dt
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(40) TFPt = [pt�˜yt/p1�˜y1]/[A t Bt] =  Ct Dt Et Tt ;                                                       t = 2,...,T.  
 
In the following section, we explain a practical method for obtaining estimates for the 
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                        = w�˜x/min s {w�˜xs/p�˜ys : s = 1,2,...,t} 
                        = w�˜x/ct(w,p) 
 
where we define the period t nonparametric unit cost function ct(w,p)  as follows:  
 
(44) ct(w,p) �{ min s {w�˜xs/p�˜ys : s = 1,2,...,t}. 
 
Thus we have an explicit functional form for the unit cost function ct(w,p) that was 
defined earlier by (10) above. It can be seen that ct(w,p) defined by (44) is a linear 
nondecreasing function of w (and hence is linearly homogeneous and concave in w which 
is a necessary property for unit cost functions) and is convex and homogeneous of degree 
minus one in p. 
 
Now we are in a position to apply the decompositions of value added growth (34), of TFP 
growth (35) and for the level of TFP (40), using the specific functional form for a sector’s 
cost constrained value added function defined by (43). However, with the assumption of 
constant returns to scale in production, the returns to scale growth factor �Gt is identically 
equal to one and so this factor vanishes from the decompositions of value added and TFP 
growth defined by (34) and (35) above. The levels return to scale growth factor Dt in (40) 
is also identically equal to one and hence vanishes from the decomposition (40). 
 
In the following two sections we return to the more general model that was described in 
Section 3, but we assume that we have constructed cost constrained value added 
functions for the K sectors. We will study two alternative approaches to the problems 
associated with aggregating over sectors. For brevity, we refer to the aggregate of the K 
sectors as the national economy.  
 
5. National Value Added Growth Decompositions: The Sectoral Weighted Average 
Approach 
 
In this first approach to deriving a decomposition of national value added growth into 
explanatory components, we simply use weighted averages of the sectoral 
decompositions. 
 
Suppose we have K �t 2 sectors and we apply the sectoral value added decomposition 
methodology that was explained in section 3 to each sector. Denote the net output vector, 
primary input vector and the corresponding price vectors for sector k and period t by ykt, 
xkt, pkt, wkt for k = 1,...,K and t = 1,...,T.22 Denote the period t nominal value added for 
sector k by vkt �{ pkt�˜ykt for k = 1,...,K and t = 1,...,T. Define the sector k decomposition 
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1,...,K and t = 2,...,T. Then the sectoral counterparts to the decompositions (34), (35) and 
(40) are as follows for k = 1,...,K and t = 2,...,T:     
 
(45) vkt/vk,t��1 = �Dkt �Ekt �Jkt �Gkt �Hkt �Wkt ; 
(46) TFPGkt  �{ [vkt/vk,t��1]/�Dkt �Ekt = �Jkt �Gkt �Hkt �Wkt ; 
(47) TFPkt     = [vkt/vk,1]/Akt Bkt  = Ckt Dkt Ekt Tkt .                                                         
 
Define the period t national value added vt as the sum of the period t sectoral value added 
for each sector: 
 
(48) vt �{ �6k=1

K vkt ;                                                                                                 t = 1,...,T. 
 
Define the period t share of national value added for sector k, skt, as follows: 
 
(49) skt �{ vkt/vt ;                                                                                    k = 1,...,K; t = 1,...,T. 
 
Using definitions (48) and (49), it is easy to see that we have the following exact 
decomposition of period t national value added growth into sectoral explanatory 
components: 
 
(50) vt 
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The above decompositions are useful if we want a decomposition of aggregate value 
added growth into sectoral contributions but they do not lead to simple decompositions 
into national explanatory factors for value added efficiency, output price effects, input 
quantity effects and so on.23 In order to accomplish this task, we resort to the use of 
approximations to the exact decompositions defined by (50) and (51). Before introducing 
these approximations, we first define period t national weighted averages of the sectoral 
explanatory factors. The period t logarithms of these national explanatory factors are 
defined as follows for t = 2,...,T: 
 
(52) ln �Dt�x �{ �6k=1

K (1/2)(skt + sk,t��1)ln �Dkt ; 
(53) ln �Et�x �{ �6k=1

K (1/2)(skt + sk,t��1)ln �Ekt ; 
(54) ln �Jt�x �{ �6k=1

K (1/2)(skt + sk,t��1)ln �Jkt ; 
(55) ln �Gt�x �{ �6k=1

K (1/2)(skt + sk,t��1)ln �Gkt ; 
(56) ln �Ht�x �{ �6k=1

K (1/2)(skt + sk,t��1)ln �Hkt ; 
(57) ln �Wt�x �{ �6k=1

K (1/2)(skt + sk,t��1)ln �Wkt . 
 
Thus �Dt�x is a weighted geometric average of the period t sectoral value added price 
indexes �Dkt where the weight for sector k in period t is (1/2)(skt + sk,t��1), the arithmetic 
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                      = ln �Dt�x + ln �Et�x + ln �Jt�x + ln �Gt�x + ln �Ht�x + ln �Wt�x 
 
where the last equality follows using definitions (52)-(57). Exponentiating both sides of 
(58) leads to the following approximate decomposition of period t national value added 
growth into explanatory factors for t = 2,...,T: 
 
(59) vt/vt��1 �| �Dt�x �Et�x �Jt�x �Gt�x �Ht�x �Wt�x. 
 
A measure of period t national real value added growth is [vt/vt��1]/�Dt�x, which is national 
nominal value added growth vt/vt��1 divided by the national value added price index �Dt�x. A 
measure of period t national primary input growth is �Et�x. Period t national Total Factor 
Productivity Growth, TFPGt, can then be defined as national real value added growth 
divided by national primary input growth: 
 
(60) TFPGt �{ [vt/vt��1]/�Dt�x �Et�x �| �Jt�x �Gt�x �Ht�x �Wt�x ;                                                           t = 2,...,T 
 
where the approximate equality in (60) follows from the approximate equality (59). Thus 
(60) provides an approximate decomposition of national (one plus) TFP growth into the 
product of various national explanatory growth factors (mix effects, returns to scale 
effects, cost constrained value added efficiency effects and technical progress effects). 
 
It is of some interest to determine what happens to the value added decomposition 
defined by (59) if we make stronger assumptions on the sectoral technology sets. Assume 
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The approximate national TFP growth decomposition that corresponds to (62) is the 
following one:  
 
(63) TFPGt �{ [vt/vt��1]/�Dt�x �Et�x �|  �Wt�x ;                                                                        t = 2,...,T. 
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6. National Value Added Growth Decompositions: The National Cost Constrained 
Value Added Function Approach 
 
In our second approach to providing decompositions of national value added growth and 
national Total Factor Productivity growth, we will utilize a general approach 
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(69) �Ht �{ et/et��1 = [�6k=1
K �Vkt

 e
kt]/[�6k=1

K �Vk,t��1
 e

k,t��1] ;                                                 t = 2,...,T. 
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(73) �JPLL
kt �{ Rk,t��1(pkt,wkt,xk,t��1)/Rk,t��1(pkt,wk,t��1,xk,t��1). 

 
The national period t input mix index which is a counterpart to the sectoral input mix 
indexes defined by (72) is defined as follows: 
 
(74) �JLPP

t �{ Rt(pt��1,wt,xt)/Rt(pt��1,wt��1,xt)                                                              t = 2,...,T 
                =  

w 12 02 Tw 7.98 -0 0 7.98 117.96 6251tt=  
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The national counterpart to the sectoral indexes defined by (78) is defined as follows: 
 
(80) �WL

t �{ Rt(pt��1,wt��1,xt)/Rt��1(pt��1,wt��1,xt)                                                              t = 2,...,T 
              = �6k=1

K Rkt(pk,t��1,wk,t��1,xkt)/�6i=1
K Ri,t��1(pi,t��1,wi,t��1,xit) 

              = �6� � 1

(p(p
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(84) �GL
kt �{ [Rk,t��1(pk,t��1,wk,t
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(95) vt/vt��1 = �DL
t �EP

t �JPLL
t �GP

t �Ht �WP
t; 

(96) vt/vt��1 = �Dt �Et �Jt �Gt �Ht �Wt . 
 
We conclude this section by deriving a useful approximation to the exact decomposition 
defined by (96).  
 
Recall the exact decompositions for �DL

t and �DP
t defined by (70) and (71). Approximate 

the theoretical sector k, period t��1 shares �Vk,t��1
 in (70) by the observed sector k, period 

t�� k,t��1 
kt. Then 

approximate the resulting weighted arithmetic mean �6k=1
K sk,t��1

 �DL
kt 
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show that an approximation to the logarithm of �GP
t is ln �GP

t �| �6k=1
K skt ln �Gkt. Thus �Gt�x 

defined by (55) in the previous section is an approximation to �Gt �{ [�GL
t �GP

t]1/2.  
 
Equation (69) above provided an exact expression for �Ht, the rate of growth of national 
value added efficiency: �Ht = [�6k=1

K �Vkt
 e

kt]/[�6k=1
K �Vk,t��1

 e
k,t��1]. Approximate the theoretical 

value added output shares �Vkt and �Vk,t��1 in the numerator and denominator of �Ht by the 
arithmetic average of their observed counterparts, (1/2)(skt + sk,t��1).40 We then have the 
following approximation for �Ht: 
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7. TFP Growth for the U.S. Corporate Nonfinancial Sector, 1960-2014 
 
The US Bureau of Economic Analysis (BEA), in conjunction with the Bureau of Labor 
Statistics (BLS) and the Board of Governors of the Federal Reserve, have developed a 
new set of production accounts (the Integrated Macroeconomic Accounts or IMA) for 
two major private sectors of the US economy: the Corporate Nonfinancial Sector and the 
Noncorporate Nonfinancial Sector. The Balance Sheet Accounts in the IMA cover the 
years 1960-2014 but do not provide a decomposition of output, input and asset values 
into price and quantity components. Diewert and Fox (2016a) provided such a 
decomposition and we will use their data in this study.  
 
In this section, we will use their output and input data for the U.S. Corporate 
Nonfinancial Sector (which we denote as Sector 1) for the 55 years 1960-2014. The year t 
output y1t is real value added41 and the corresponding year t value added deflator is 
denoted as p1t. The ten inputs used by this sector are labour and the services of nine types 
of asset.42 The output and input data are listed in Appendix A of Diewert and Fox 
(2016b). The year t input vector for this sector is x1t �{ [x1

1t,x2
1t,...,x10

1t] where x1
1t is year 

t labour input measured in billions of 1960 dollars and x2
1t,...,x10

1t are capital service 
inputs measured in billions of 1960 capital stock dollars. The corresponding year t input 
price vector for Sector 1 is w1t �{ [w1

1t,w2
1t,...,w10

1t] for t = 1960,...,2014. 
 
Our year t technology set for Sector 1, S1t, is defined as the free disposal cone spanned by 
the observed output and input vectors for the sector up to and including the year t 
observation. For convenience, we label the years 1960-2014 as years 1-55 in definitions 
(100)-(104) below. Thus S1t is defined as follows: 
 
(100) S1t �{ {(y,x): y �d �6s=1

t y1s �Os; x �t �6s=1
t x1s �Os; �O1 �t 0, ..., �Os �t 0};                 t = 1,...,55.  

 
We adapt definition (41) of section 4 to the present situation and define the Sector 1 year 
t 



 30 

Using the cost constrained value added functions defined by (101), we can readily 
calculate the Sector 1 counterparts to the year t generic value added growth 
decompositions (32)-(33) that we derived in section 3 above. Using our present notation 
for the Sector 1 prices and quantities, these decompositions can be written as follows for t 
= 2,...,55:43 
   
(102) v1t/v1,t��1 = p1ty1t/p1,t��1y1,t��1 = �H1t �DP

1t �EL
1t �JLPP

1t �WL
1t ; 

(103) v1t/v1,t��1 = �H1t �DL
1t �EP

1t �JPLL
1t �WP

1t ; 
(104) v1t/v1,t��1 = �H1t �D1t �E1t �J1t �W1t . 
 
As in section 3, we define year t Total Factor Productivity Growth for Sector 1 as value 
added growth divided by output price growth �D1t times input quantity growth �E1t:  
 
(105) TFPG1t �{ [v1t/v1.t��1]/[�D1t�E1t] = �H1t �J1t �W1t ;                                            t = 1961,...,2014. 
 
Since we have only a single value added output, �D1t �{ p1t/p1,t��1 can be interpreted as a 
Fisher output price index and [v1t/v1.t��1]/�D1t can be interpreted as a Fisher output quantity 
index going from year t��1 to year t. �E1t is the Fisher input quantity index going from year 
t��1 to year t. Thus TFPG1t is equal to a conventional Fisher productivity growth index in 
this one output case.  
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It can be verified that the TFP growth decomposition defined by (105) holds; i.e., for 
each year t, nonparametric TFP growth TFPGt equals the product of value added 
efficiency growth �H1t times the year t input mix growth factor �J1t times the year t technical 
progress measure �W1t. It can be seen that the input mix factors are all very close to one. It 
can also be seen when value added efficiency in year t, e1t, is less than one, then the year t 
technical progress measure �W1t always eq
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Table 2: U.S. Corporate Nonfinancial Value Added Year t Levels v1t/v1.1960, Output Price 
Levels A1t, Input Quantit y Levels B1t, TFP Levels TFP1t, Input Mix Levels C1t, Value Added 
Efficiency Levels E1t and Technical Progress Levels T1t where all Levels are Relative to 1960 
 

Year t v1t/v1,1960 A1t B1t TFP1t C1t E1t T1t 

1960 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
1961 1.02696 1.00305 1.00469 1.01906 1.00000 1.00000 1.01906 
1962 1.12113 1.00954 1.03945 1.06839 1.00000 1.00000 1.06840 
1963 1.19615 1.01454 1.06476 1.10730 1.00000 1.00000 1.10730 
1964 1.29190 1.02388 1.09407 1.15329 1.00000 1.00000 1.15330 
1965 1.42514 1.04188 1.14350 1.19620 1.00000 1.00000 1.19622 
1966 1.57518 1.07230 1.20194 1.22217 1.00000 1.00000 1.22220 
1967 1.65648 1.09623 1.23486 1.22368 1.00000 1.00000 1.22370 
1968 1.81864 1.13024 1.27771 1.25934 1.00000 1.00000 1.25937 
1969 1.97106 1.17785 1.32956 1.25864 0.99994 0.99950 1.25937 
1970 2.02656 1.22161 1.32822 1.24899 0.99888 0.99287 1.25937 
1971 2.18245 1.26574 1.33802 1.28866 0.99894 1.00000 1.29004 
1972 2.43141 1.31076 1.39306 1.33157 0.99894 1.00000 1.33300 
1973 2.73032 1.38762 1.45963 1.34803 0.99894 1.00000 1.34947 
1974 2.95307 1.52395 1.47611 1.31275 0.99860 0.97416 1.34947
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Note that the final level of TFP in 2014, 2.46873, is slightly less than the level of 
technology in 2014, which was 2.47559. This small difference is explained by the fact 
that the cumulative input mix level, 0.99725, is slightly less than 1 in 2014. We plot 
TFP1t, C1t, E1t and T1t in Figure 1. 

 
It can be seen that there was a substantial decline in value added efficiency over the years 
2006-2009 and in fact, TFP has grown at a slower than averag
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Diewert and Fox (2016b). The year t input vector for this sector is x2t �{ [x1
2t,x2

2t,...,x15
2t] 

where x1
2t is year t labour input measured in billions of 1960 dollars and x2

2t,...,x15
2t are 

capital service inputs measured in billions of 1960 capital stock dollars. The 
corresponding year t input price vector for sector 2 is w2t �{ [w1

2t,w2
2t,...,w15

2t] for t = 
1960,...,2014. 
 
Our year t technology set for Sector 2, S2t, is defined as the free disposal cone spanned by 
the observed output and input vectors for sector 2 up to and including the year t 
observation. Again for convenience, we label the years 1960-2014 as years 1-55 in 
equations (107)-(108) below. Thus S2t is defined as follows: 
 
(107) S2t �{ {(y,x): y �d �6s=1

t y2s �Os; x �t �6s=1
t x2s �Os; �O1 �t 0, ..., �Os �t 0};                 t = 1,...,55.  

 
We adapt definition (41) in section 4 to the present situation and define the Sector 2 year 
t cost constrained value added function R2t(p,w,x) for p > 0, w >> 015 and x >> 015 as 
follows: 
 
(108) R2t(p,w,x) �{ max y,z {py: (y,z)�•S2t; w�˜z �d w�˜x}                                 t = 1,...,55   
                           =

t�O�O,...,1
max {p(�6s=1

t y2s�Os) ; w�˜(�6s=1
t x2s�Os) �d w�˜x ; �O1 �t 0 ,..., �Ot �t 0} 

                           = max s {py2s w�˜x/w�˜x2s : s = 1,2,...,t} 
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Table 5: U.S. National Nonfinancial Value Added Growth vt/vt��1, Output Price Growth �Dt�x, Input Quantity 
Growth �Et�x, TFP Growth TFPGt�x
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From Table 6, it can be seen that the final level of approximate national TFP relative to 
1960 was 2.33486 which is somewhat below the final level of technology, which was 
2.35219. Th
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As was noted in the previous section, the year t sector k explanatory growth factors, �Dkt, 
�Ekt, �Jkt, �Hkt and �Wkt, are listed in Tables 1 and 3 above. Now apply definitions (69)-(92) in 
order to define the year t national growth factors, �Dt, �Et, �Jt, �Gt, �Ht and �Wt. The year t exact 
decomposition of national value added growth is given by (96), which we repeat here as 
equations (113): 
 
(113) vt/vt��1 = �Dt �Et �Jt �Gt �Ht �Wt ;                                                                        t = 1961,...,2014. 
 
Define the national year t TFP growth factor as TFPGt �{ [vt/vt��1]/�Dt�Et. This definition 
and equations (113) imply that we have the following national exact TFP growth 
decomposition into explanatory factors: 
 
(114) TFPGt �{ [vt/vt��1]/�Dt �Et = �Jt �Gt �Ht �Wt ;                                                     t = 1961,...,2014. 
 
The growth decomposition components that appear in (114) are listed in Table 7.     
 
The arithmetic means of the growth rates over the 54 years 1961-2014 are listed in the 
last row of Table 7.52 It can be seen that the average rate of national TFP growth over 
these years was 1.59 percent per year, just below the average rate of technical progress, 
which was 1.60 percent per year. The results in Table 7 are very similar to the results 
listed in Table 5 above.  Again, technical progress growth was not present for 8 years: 
1974, 1975, 1979, 1980, 1982, 1989, 2007 and 2009. For those years, the rate of growth 
of value added efficiency was below unity and this translated into negative rates of TFP 
growth for those years. The national exact input mix and returns to scale growth factors, 
the �Jt and �Gt, are all very close to unity. The exact equality in (114) was not quite exact 
due to rounding errors: the absolute value of the difference between TFPGt and �Jt �Gt �Ht �Wt 
was always less than 0.00003 and the mean difference was -0.0000027.  
 
To conclude this section, apply definitions (37)-(40) to national value added in order to 
obtain the following exact levels decomposition for national Total Factor Productivity in 
year t relative to the year 1960, TFPt�x: 
 
(115) TFPt = [vt/v1960]/[A t Bt] =  Ct Dt Et Tt ;                                               t = 1960,...,2014. 
 
Table 8 lists the various levels that appear in (115) along with the variable Checkt, which 
is defined as TFPt minus Ct Dt Et Tt. It can be seen that Checkt is quite small although the 
rounding errors build up as time goes on. 

                                                 
52 The mean for �V1t is for all 55 observations. 
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11. Conclusion 
 
We have derived decompositions of nominal value added growth (and TFP growth) for a 
single sector into explanatory factors. We also two alternative approaches to relating the 
sectoral decompositions to a national growth decomposition: a weighted average sectoral 
approach and a national value added function approach.  
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