
Final report 2020
Methods for identification of free
navigable space

Mitko Aleksandrov, Abdoulaye Diakité, Jinjin Yan, Wei Li and Sisi Zlatanova

Introduction
The research within this project is a part of four-year (2018-2022) international project named iNous
focusing on seamless indoor-outdoor navigation for emergency response. The project is funded by
South Korea government and leaded by Pusan University, South Korea. The overall idea of the
project is to develop a workflow for navigation for the purpose of disaster management system as
illustrated below (Figure1):

Figure 1.

Scientific project information
This year the research continued

keep semantic information, and create one geometry column with 3D point in PostGIS. Regarding
to index, we create B-tree index on semantic columns, and GiST index on geom column.

Figure 3: Example of a table created in PostgreSQL to store POINT layout.

MULTIPOINT Layout
MULTIPOINT is another geometry that consists of a collection of POINT. In this kind of layout, we
consider regarding each object as one multipoint, that means, voxels in one MULTIPOINT geometry
have same objID.

When using the multipoint geometry type, we need to consider how to cut the voxel data, that is,
those Voxels stored in a multipoint object. We propose a semantic-based voxel data partitioning
strategy. Specifically, we want to store all voxels with the same semantic information in a multipoint
object, including object semantics and IFC semantics. Moreover, similar to POINT, two indexes (i.e.,
B-tree and GiST) are built on semantic columns and geom respectively.

Figure 4:. Example of a table created in PostgreSQL to store MULTIPOINT layout.

PCPATCH Layout
Pointcloud is a PostgreSQL extension for storing point cloud (LIDAR) data, where PcPatch can be
regarded a potential structure used for management of voxel model in PostgreSQL. In our case, we
collect a group of voxels with same semantic information into a PcPatch. Each patch should
hopefully contain voxels that are near together. That is the same partition strategy as MULTIPOINT.

Following the Pointcloud schema 3 (PostgreSQL Pointcloud deals with all this variability by using a
“schema document” to describe the contents of any particular LIDAR point.), we prepare a schema
document to describe the contents of any particular voxel. Each voxel contains three dimensions,
named X; Y; Z, and each dimension will be of INTEGER data type, with scaling 0:1. This schema
document is stored in the pointcloud formats table, along with a pcid (i.e.,“pointcloud identifier”).

Different from multipoint representation, GiST index is created based on 2D bounds of the patch
because it cannot be indexed directly on the PcPatch type. Fortunately, Pointcloud provides

PC EnvelopeGeometry(PCpatch) functions that can

Figure 7: Sematic query of all Spaces, Windows, Doors and Slabs: 2D (left and 3D (right) view

IndoorGML 2.0
Several changes were brought compared to IndoorGML 1.x. Some classes and attributes were
renamed, modified, or added in the standard for the sake of simplicity, clarity and genericness. To
facilitate the comparison, Figure 1 illustrates the core module of IndoorGML1.x and IndoorGML2.0
that integrates the changes detailed in the following subsections.
Renamed Classes
PrimalSpaceLayer and DualSpaceLayer: The two principal classes of the core module are the
dedicated to the representation of the

Modified classes and attributes
Geometry of cells and external references:

Because every space comes down to a CellSpace in indoorGML and any space can be a location of

Figure 9: UML diagram of IndoorGML core module

GML examples
We provide some case illustrations of IndoorGML2.0 to demonstrate the flexibility offered by the
new UML diagram. We explore different scenarios: (a) geometry only, (b) network only and (c)
geometry + network combined. This involves the use of other common standards as data source and

Figure 11: An indoorGML model with geometry only

Network only
Similarly to the previous example, an IndoorGML file could serve for the exchange of topological
(network) information of a building model.

Figure 12: IndoorGML with topology (network) only.

In a scenario where the geometry is not needed, this could be a convenient option to use,
guaranteeing lightweight files. Figure 12 shows an example of rooms and openings adjacency network
computed from the input BIM model. The Node entities are computed using the centroid of the
IfcSpace elements, while the Edge elements are obtained by connecting the nodes of adjacent spaces.
Similarly to space boundaries, the information of the connectivity between the Ifc entities may be
directly available in the model (e.g. using IfcRelSpaceBoundary relations). Note that for the case of the
topology only, all the classes of the core model are still required, but the CellSpace entities will carry
no geometric attribute.

Geometry, topology and semantic
Most of IndoorGML files are expected to carry those information (although semantic is currently not
included in the core module). The image below shows the structure of an IndoorGML2.0 file with
geometric description of CellSpace objects, as well as semantic information associated to the cells,
based on the navigation module (e.g. navi:GeneralSpace). The network part carries topological
information and the geometry of the network, with nodes and edges. This structure is similar for the
previous example, with only the relevant part being described in the corresponding files.

[…]

[…]

Other related topics
Within this project two other related topics were investigated. Substantial work was completed within
IndoorGML 2.0 as well as extending the space-based concept to outdoor. Two critical papers for
creating outdoor spaces where published.

Mapping UML schema to GML and SQL (Jinjin)
The UML diagram of IndoorGML 2.0 was automatically mapped to GML and SQL technical
implementation. For the automatic mapping Enterprise Architect was used.

o Mapping UML schema to GML
The Enterprise Architect offers interface to achieve this key step, which includes four steps:
Code -> Export an XML Schema (XSD) File -> Set configurations -> Generate.

The first two steps can be seen in Figure 10. Figure 11 shows the rest two steps. In
configurations setting, the Source Package of UML, encoding (default is Unicode (UTF-8)), the
filename of the exported GML XSD file, as well as other preference options, should be
specified. In this stage, we can preview and check the XSD to be exported by clicking the “View
Schema”. After clicking the bottom “Generate”, the generating processes are monitored in
the Progress box.

Figure 10: The interface of Enterprise Architect for mapping UML schema to GML

Figure 11: The interface of setting configures in Enterprise Architect

After finishing the whole process, we can find the exported XSD file. For instance, in the UML
model, there are three classes:

Figure 13: The XSD of the three classes: PrimalSpaceLayer, CellSpace and CellBoundary

Mapping UML schema to SQL
The Enterprise Architect also offers interface to map UML schema to SQL, which includes three steps:
(i) Open EA file and Go to Configure -> Setting -> Database Datatypes; (ii) Select your file and then go
to Design -> Transform -> Apply Transformation; and (iii) Select the DDL folder in the Project Browser
and then go to Code -> Export a Database Schema (DDL).

I. Open EA file and Go to Configure -> Setting -> Database Datatypes (Figure 14)

Figure 14: The interface of Enterprise Architect for mapping UML schema to SQL

In Database Datatypes select PostgreSQL and then make it as default choice (Figure 15).

Figure 15: Set configurations of Database Datatypes

II. Select your file and then go to Design -> Transform -> Apply Transformation (Figure 16).

Figure 16: Select Design, Transform, and Apply Transformation

In the Model Transformation Select the Transformation as DDL and then press Do Transform
(Figure 17).

Figure 17: Do Transform

As result, a new folder will appear in the project browser (DDL folder) (Figure 18).

Figure 18: Select DDL folder

III. Select the DDL folder in the Project Browser and then go to Code -> Export a Database
Schema (DDL) (Figure 19).

Figure 19: Select Code and Export

	Introduction
	Scientific project information
	Algorithms for voxelisation
	Storage of Voxels
	ARRAY Layout
	POINT Layout
	MULTIPOINT Layout
	PCPATCH Layout

	IndoorGML 2.0
	Renamed Classes
	Modified classes and attributes
	New class and attributes

	GML examples
	Geometry only
	Network only
	Geometry, topology and semantic

	Other related topics
	Mapping UML schema to GML and SQL (Jinjin)
	Mapping UML schema to SQL

	Milestones
	Conclusions
	Publications within this project

