MATHEMATICS ENRICHMENT CLUB. Solutions to Problem Sheet 9, July 22, 2014

- 3. 2 10^{23} meters
- 4. (a) $m_3 + m_4$
 - (b) $m_3 = 2$; $m_4 = 1$.
 - (c) Something like $m_1d_1=m_3d_3^0+m_4d_4^0\,$
- 5. (a) 5.
 - (b) Try not to break anything.
 - (c) Since the series 1 + 1=2 + 1=3
- 6. (a) Halfway between A and B
 - (b) The centroid.
 - (c) The centroid.
- 7. Consider a convex quadrilateral ABCD .
 - (d) They are colinear, and in the ratio 1:2.