MATHEMATICS ENRICHMENT CLUB. Solution Sheet 6, June 2, 2015 ¹

1. Sum of an arithmetic sequence with 11 term is

$$S_{11} = \frac{11}{2}(2a_1 + (11 \quad 1)d) = 220;$$

and the $\ensuremath{\mbox{G}}^{\mbox{h}}$ (middle) term is

$$a_6 = a_1 + (6 1)d$$
:

A solution to the former equation $isa_1 = 5$ and d = 3, hence $a_6 = 5 + 5$ 3 = 20.

2. (a) Let n

the 12 group case. Thus we conclude the total number of ways Bernard can do this is 23!

By statements (i) and (ii), 2b+6 is divisible by b. Therefore b is a divisor of 6; that is b is 1; 2; 3 or 6. By statement (i) and (iv), 9b+5 is a prime. Inserting the possible values of b into 9b+5, one sees that b=2 is the only solution.

Senior Questions

- 1. (a) One way to do this is by polynomial long division http://en.wikipedia.org/wiki/Polynomial_long_division, another way is by induction.
 - (b) Using part (a), we haveaⁿ 1 = (a 1)(aⁿ + a^{n 1} + ::: + a + 1). Since aⁿ 1 is prime, the only factor it can have is 1; we must have 1 = 1, so a = 2.
 Supposen is not prime, then there are positive integersx > 1 and y > 1 such that n = xy. If we write aⁿ 1 = a^{xy} 1 = (a^x)^y 1, then we can use the results of part (a) with a^x instead of a to obtain

$$a^n$$
 1 = $(a^x)^y$ 1 = $(a^x$ 1)[$(a^x)^y$ + $(a^x)^y$ 1 + ::: + a^x + 1]:

Because the LHS of the above equation is a prime, we can conclude (just as before) that a^x 1 = 1, which means a^x = 2 x = 2; x = 1, and we have a contradiction.

2. If A shoots C and hits, then B willshif (a) p3rli35 o Td [(and [(a)]TJ/f20 7.9761 ig.19d8 TJ/F19(o[(

we have

$$f(x) = 1 (x)^{2015}$$