MATHEMATICS ENRICHMENT CLUB. Solution Sheet 10, July 25, 2016

1. Since each 3 4 and 4 3 rectangle needs to have at least one black square, the minimum possible is 12. This can be achieved with the following con guration.

	X			X		X	
			X				
	X					X	
			X		X		
		X					
4	X			X		X	

2. By substituting the two points A(2;1) and B(2;2) in to the equation 2 of 2 the parabola,

4. Let a and b be the shorter two sides of the triangle and c be the hypotenuse. Then we have

$$\frac{1}{2}ab = 3(a + b + c)$$
:

Dividing both sides by 3, using $c = D \frac{D}{a^2 + b^2}$ and rearranging

$$\frac{ab}{6}$$
 $(a+b) = \sqrt[p]{a^2 + b^2}$:

Squaring both sides,

$$\frac{a^2b^2}{36} \quad \frac{ab}{3}(a+b) + (a+b)^2 = a^2 + b^2$$
:

Simplifying,

(d)
$$x y = 7 ext{ and } x^2 + xy + y^2 = 7$$

The rst and third cases have no solutions, the second case has solutions fx = 5; y = 6g; fx = 6; y = 5g and fourth case has solutions fx = 3; y = 4g; fx = 4; y = 3g.

6.

Senior Questions

1. For p=2 we have $2^2+2^2=8$ which is not prime. For p=3, we have $2^3+3^2=17$ which is prime. For p>3 (odd), we claim that 2^p+p