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Competition 1

Junior Division – Problems and Solutions

Problem 1
Find the set of all pairs of positive integers (n,m) that satisfy

∣
∣n2 − m2 − 2010

∣
∣ ≤ 1.

Solution 1
We being by factoring then we seek n and m that satisfy one of the following:

(i) (n − m)(n+m) = 2009 = (1)(7)(7)(41)(2009) or
(ii) (n − m)(n+m) = 2010 = (1)(2)(3)(5)(67)(2010) or
(iii) (n − m)(n+m



x(x+ 1)(x+ 2)(x+ 3) + 1 = [(x+ 1)(x+ 2)][(x(x+ 3)] + 1

= (x2 + 3x+ 2)(x2 + 3x) + 1

= [(x+
3

2
)2 − 1



A monk sets out from a monastery in a valley at dawn and follows a winding path
up a mountainside at a constant speed, planning to arrive at a temple on the mountain-
top at dusk. A second monk sets out from the temple at dawn and travels down the
mountainside along the same path, but at twice the speed, until she meets the monk
coming up and then they stop for a break together. The temple is at an elevation 945
metres above the elevation of the monastery. When viewed from above the winding
path appears as a regular rectangular spiral with the geometry of the central portion
as shown below.
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The two shortest segments of this spiral have length of 1 metre each and the two



3. Suppose that the two monks meet on a spiral arm segment of length k. Then we
require either i) 2(1 + 2 + k − 1 . . .) + k < 6600 and 2(1 + 2 + k . . .) > 6600 or ii)
2(1+2+k . . .) < 6600 and 2(1+2+k . . .)+(k+1) > 6600 for some integer k. Note
that 2(1 + 2 + 80 . . .) = 6480, 2(1 + 2 + 80 . . .) + 81 = 6561, 2(1 + 2 + 81 . . .) = 6642
so that condition i) is satisfied for k = 81. The two monks meet on a spiral arm of
length 81 metres, when viewed from above.

An alternate method of solution using trigonometry results in a simpler solution



A cubic block can be partitioned into smaller cubic blocks in many ways. An integer
n is called a cute-cube number if a cubic block can be partitioned into n cubic blocks of
at most two different sizes.

1. Provide an example of a cute-cube number that is greater than 23 but less than 33.

2. Show that 2010 is a cute-cube number.

Solution 4



2. More generally, starting with N0 we construct N1 with digits b1 = 9 ≥ b2 ≥ b3 and
then the digits of N2 are 10+b3−b1, 9, b1−b3−1 = b3+1, 9, 8−b3. The largest digit
is 9 and the sum of the remaining digits is 9. Note too that the smallest digit is
increased by one and thus the larger is decreased by one. This can only continue
until the input is 495 which must occur after at most six steps.

Problem 6
Let τ(n) denote the number of positive factors of a positive integer n. Prove that,

for any positive integers m and n, τ(mn) ≤ τ(m)τ(n).

Solution 6
Let π, where i = 1, 2, 3, . . . , denote the prime factors of m and the prime factors

of n (some of which may be common). Using the product symbol
K∏

i=1

xi to denote the

product x1 · x2 · x3 · · · · · xK we can write

m =
K∏

i=1

pαi

i αi ≥ 0

n =
K∏

i=1

pβi

i βi ≥ 0

mn =
K∏

i=1

pαi+βi

i

The divisors of pδii are 1, pi, . . . , p
δi
i so that τ(pδii ) = δi + 1 and

τ(m) =
K∏

i=1

(αi + 1)

τ(n) =
K∏

i=1

(βi + 1)

τ(mn) =
K∏

i=1

(αi + βi + 1).

The result τ(mn) < τ(m)τ(n) now follows since

(αi + βi + 1) ≤ (αiβi + αi + βi + 1) = (αi + 1)(βi + 1).

An alternate proof is possible without using unique factorisation into primes. This
alternate proof starts with the proposition that if d is a divisor of m (i.e. d|mn) then
d = d1d2, where d1|m and d2|n. It then follows that

τ(mn) = |{d ∈ Z
+ : d|mn}|

= |{d1d2 : d1, d2 ∈ Z
+, d1|m, d2|n}|

≤ τ(m)τ(n).

Of course it remains to prove the proposition (see the problems section in this issue).
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Senior Division – Problems and Solutions

Problem 1
See Problem 6 in the Junior Competition.

Solution 1
See Problem 6 solution in the Junior Competition.

Problem 2
The infinite order tower power of x is defined as

T (x) = xxx
x
x
.
.
.

= x(x(x(x
.
.
.

))).

1. Find the largest number x for which T (x) is finite.

2. Find the value of T (x) in this case.

Solution 2
First we may note that T (1) = 1 and thus we seek xmax ≥ 1. Let

T (x) = xxx
x
x
.
.
.

then take logarithms of each side to obtain

log T = log xT = T log x.

Now solve for

x(T ) = exp

(
log T

T

)

.

To find the maximum of x(T ) differentiate x with respect to T then

dx

dT
=

(
1 − log T

T 2

)

exp

(
log T

T

)

.

Now dx



(i) a unique solution in t for 0 < x ≤ 1

(ii) two solutions in t for 1 < x < e
1
e

(iii) one solution in t for x = e
1
e

(iv) no solutions in t for x > e
1
e .

Then taking x = e
1
e we have e

t

e = t if t = e.

Problem 3
A gaoler enters a room with three prisoners and places ten hats in clear view on a

table in front of the prisoners. Some of the hats are black and the others are white. The
gaoler blindfolds the prisoners and then puts a hat on each of them and removes the
remaining seven hats and says, “I will give you turns to deduce the colour of the hat
that I have put on your head. If you can do this correctly you will be set free.”

He then removes the blindfold from the first prisoner who says, “I can see the



The remaining possibilities all have a white hat on Prisoner 3.
If there were three, four, five, six or seven black hats then in addition to the above

there would be the possibility of a black hat on each prisoner in which case Prisoner 3
could not deduce if he had black or white.

If there were eight black hats then there were only two white hats and by swapping
black and white in the above table Prisoner 3 would have been led to the conclusion
that he had a black hat but this was not his conclusion.

If there was only one white hat then similar to the case of one black hat, Prisoner 3
would have been able to deduce the colours of the hats of all three.

The case of no white hats is trivial.

Problem 4
Consider a triangle with sides a, b, c of unequal length, a < b < c. Construct a

sequence of triangles T1, T2, ... as follows:

Let s1 =
a+ c

2
and let T1 have sides s1, s1, b.

Let s2 =
s1 + b

2
and let T2 have sides s2, s2, s1.

Let s3 =
s2 + s1

2
and let T3 have sides s3, s3, s2.

For n ≥ 3, let sn = 1
2
(sn−1 + sn−2) and let Tn have sides sn, sn, sn−1.

1. Prove that each triangle in the sequence has perimeter a+ b+ c.

2. Prove that for n ≥ 3, sn − sn−1 =
(−1)n−1

2n−1
(s1 − b).

3. What happens to the three sides of Tn as n increases without bound?

Solution 4

1. Let P (n) be the proposition 2sn + sn−1 = a+ b+ c. We also define s0 = b. Clearly
P (2)



2.

sn − sn−1 =
1

2
(sn−1 + sn−2) − sn−1

= (−1

2
)(sn−1 − sn−2)

= (−1

2
)2(sn−2 − sn−3)

...

= (−1

2
)n−1(s1 − s0)

= (−1

2
)n−1(s1 − b)

3. As n → ∞, sn − sn−1 = 0 and sn is finite, x say, so that the sides sn, sn, sn−1 of the
triangle T (n) approach x, x, x, that is, the limiting triangle is equilateral.

P



Problem 6
Consider the list of fractions
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1
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1

12
,

1

20
, . . .


