، •• '•• • , ••• ، [•]⊷• •• - - '•- • '••• ج____ ج__ (S, ___ *et al.*, 2010). جA__ , ___ -· V: •= • • et al., 2001; L., -G., et al., 2003), ... et al., (B., et al., 2010), ..., et al., 2009; E, et al., 2011; S, et al., 2012). H (P - 1, P - 1,and the former of the second s Te______ V_____ V_____ (PCR ., e_____30e3(V______)e____TJ-14V___e___ V___ (PCR ., e______)e___TJ-14V___e___ V____

- 221.9(, -)TJT*(, 2⁴.')-7(<u>\$\$(</u>, 0 226. (,)

Dive sity of dinoflagellates via the C tag-encoded FLX 454-py osequencing (cTEFP)

F^W₄, B₄, CKI, A₄ TEFP. A. . 30 09 Ę. $T_{\bullet} = \frac{1}{2} + \frac{1}{2$ · • · • / • 243 🖕 🚬 (F_ S1 S3, Sc ippsiella, Pe idinium, Pfieste ia , 279 O∓U S, Gambie discus, Ost eopsis, Coolia,

 Alexand ium, P otoce atium, Gory aulax

 (F. 2). H

 S

 7%, 99%

TL (C1-673 (1)		
• *		um doreaul EU1305/4
	-	
B1-579 (2)		
		· _ Press (8)
		Sumblodiality
		01.070 (0)
		1:1-676730
	5649-333 (8)	
	- implication opercention (Contore)	1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -
		<u>Amphidinuum ca.Fauk.aa</u> J-LU
1.0.		9 9 9 9
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
12 FUI2 FI33" ***		Helerocaosa rolun

 Fig. 1. P
 Fig. 1. P
 Cob
 Cob
 PCR
 Fig. 1. P

ана солово ж Е Е и солово ж Е Е и солово на солово и ж

 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 70 90%
 500
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 81 70 90%
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 81 70 90%
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 81 70 90%
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 83 74
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 81 - P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 81 - P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 81 - P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 81 - P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P
 Fig. 2. P

 81 - P
 Fig. 2. P

 81 - P
 Fig. 2. P

 81 - P
 Fig. 2. P

• 2013 S A, . . . M J . . W, & Se_ L, , Envi onmental Mic obiology , 16, 467 4 5

472 G. S. Kohli, . .

S, ID	B1	B2	B3	B4	C1	C2	E1	т.,
N. SEQ	5627	3264	257	4540	436	3730	6702	30 09
N. SEQ	23 1	11 1	761	402	1713	1227	20 3	974
N cob SEO	2362	1176	753	391	1705	1210	2001	959
	420	00	0.7	17	260	1210	1167	2045
	430	23	2 /	17	200	40	1107	3245
N. C,C,St≊Q,.99% SEQ ₹_ //*	97	4	52	11	5	156	112	400
C	91.39	93.69	91.9	64.70	9.23	92.31	95.	
N. U. SEQ	5	42	33		42	2	7	243
S, *, ', ', ', (Pfieste ia 🔒	Pfieste ia 🖡	Sc ippsiella	U.	Pfieste ia 🔒	Sc ippsiella	Sc ippsiella	
••• • • ••)	• (3)	• (4)	f = , . (1)	· · · · · · ·	• (3)	ř – , . (3)	f (3)	
	U.	U.,	Pfleste ia	()	Sc ippsiella	Pfieste ia	U., .	
			ء . (3)	. ,	<i>a</i> . (7)	ء . (3)		
	(55)	(2)					(75)	
	(55)	(3)	· .		· · ·	· · ·	(75)	
			••• <i>**</i>		•	• · • ?		
			(29)		(32)	(76)		
SEQ ,, . G. ,	561	365	0	97	616	6	1 0	1967
N . 🖞 🖞 SEQ	170	0	17	22	121	4	44	279
•								
·_ /··	00 6	0.6	75	7.60	00.97	07.05	00.05	
0	92. 0	9. 0	.75	7.02	92.37	97.05	90.05	
SEQ(%)								
N. C, C SEQ	65	40	9	11	63	3	29	156
· · · · · · · · · · · · · · · · · · ·								
S,	Ost eopsis	Ost eopsis	Alexand ium	Coolia 🔒	Coolia 🔐	U.,	Ost eopsis	
	a (1)	a (1)	a . (2)	• . (5)	e . (13)	1	a . (1)	
	Coolia	Coolia	P bloce atium		Alexand ium	(2)	Alexand ium	
	0000114	000111	- (0)	· · ·	- (1)	(3)		
	₹(0)	*(9)	f = (2)	•- • /				
	Alexand lum	u	Gony aulax	(6)	Gamble discus		Gample discus	
	ř – , . (2)	· · · · · · · ·	r = (1)		€_,.(1)		e_, . (1)	
	P ôtoce atium	(30)	U. L		Gambie discus		Gambie discus	
	e . (1)		· · · · · · ·		£ (4)		£ (4)	
	Gonv aulax		(4)		U		U	
	(1)		(4)					
					• • • • • •		···· · · · · · · · · · · · · · · · · ·	
	U. j				(44)		(15)	
	· · · · · · · · · · · · · · · · · · ·							
	(54)							
SEQ ,, C. ,	911	23	213	10	373	79	14	13
N SEO 97% SEO	44	22	23	4	13	16	2	101
			20	-	10	10	-	101
°_ (~* 0 ¹ 1 070/			07.05			07.40		
C 97%	99.01	99.9	97.65	.90	99.19	97.46	99.99	
SEQ(%)								
N. Ľ,Ľ,SEQ ,	40	26	21	7	11	14	2	2
S = (Gy mnodinium	Gy mnodinium	Gy mnodinium	A/ mnodinium	Gy mnodinium	Av mnodinium	Amphidinium	
	- (0)	eg inno annann	- (1)	- (0)	- (1)	- (0)	- (0)	
•••••••••••••••••••••••••••••••••••••••	∫ ² − . · (2)	Calenalum	f = 2 · (1)	jē − , · (∠)	F = 2 · (1)	j = , · (2)	∫r − , · (∠)	
		F = (1)						
	Ka lodinium	Gy'mnodinium	Ka lodinium	U ₁	Akashiwo	Amphidinium		
	🚅 _ (1)	e . (3)	e . (3)	· · · · · ·	🚅 (1)	£ (5)		
	Akashiwo	Ka lodinium	Ka lodinium	(5)	Amphidinium	U		
	• (1)	• (1)	mic um	(0)	• (3)			
	F = 2 + (1)	f = 2 · (1)	inic uni		f = / · (0)	····		
			· · · · · · · · · · · · · · · · · · ·			(7)		
	Amphidinium	Akashiwo	AKashiwo		u,			
	ca te ae	ř – J. (1)	ř – , . (2)		· · · · · · ·			
	e . (1)	,	,		(6)			
	Amphidinium	Amphidinium	U,					
	, (1)	ب ج (1)	·····					
	/ =/+(//	/ =/+(//	•- • *•					
	°.)	°,	(14)					
	· · · · · ·	· · · · · ·						
	(34)	(19)						
SEQ ,, P	9	16	7	2	165	3	411	9
N SEQ . 99% SEO	23	43	2	5	34	2	57	126
· · · · · · · · · · · · · · · · · · ·	-	-		-	-			
	0	01 20		02 5	04 54	66 66	94.64	
050	э.	31.33		92. 0	34.34	00.00	34.04	
SHQ (%)								
N. C., C. SEQ	20	41	2	5	34	2	4	97
· · · · · · · · · · · · · · · · · · ·								

474 G. S. Kohli, .

Dive sity of dinoflagellates via py osequencing 475

• 2013 S . . . A, . . M J . W. & Se_ L, , Envi onmental Mic obiology , 16, 467 4 5

Fig. 5. P

цан (* , , , * , * , , * , * , , * ,

- H , , , , M., , , , L, , , , B.S. (200) M , 1 - 1 , C, , , J Phy col **44:** 451 466.
- J., C.J., G., S.G., W., R.F. (2012) T. Genome Biol Evol 4: 59 72.
- κ
 κ
 Toxicon 56: 244 25 .

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
 κ

 κ
 κ
- 3066. **28:** 1647 1649.
- K , E., W , , L., G, , J. (2004) G., 4 P., 1 • • / -
- . Mic ob Ecol 48: 521 527. K^H, V., E , A., O , H., H^H, P. (2010) W , A., O , H., C, H^H, P.
- Envi on Mic obiol **12:** 11 123. L*_ , R.J. (2006) C
- . Toxicon **48**: 799 09.
- L , E.L., H , . . , K.M., . . , A , . . , D.M. (2005) P -•_____ J-1233 Đ____ H, J, 3 Đ___ •___ Avie eHa mfu (20169 **b∕tNa**tau

A.IgaeTJ/F2 1 Tf36.49160 TD(4: Hughb-leel

An.Wa.