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SOLVING TRIGONOMETRIC EQUATIONS

You will often need to be able to find all solutions of simple
equations involving trigonometric functions. For example, solve

cos θ = 1
√

2
.

First, you should know that one solution is θ = π

4
: if you are un-

sure about this, see the “values of trig functions” revision work-
sheet. However, this is not the only solution. We know that cosine
is an even function, and so θ = −π

4
is also a solution. Also, cosine

has period 2π, so taking a solution and adding 2π any number of
times will give further solutions. So we have solutions

θ = ±π

4
+ 2nπ where n is an integer.

Looking at the graph may help you to find everything after the
initial solution, and should also convince you that we have now
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A similar procedure works for cos θ = − 1
√

2
, though note that in

this case our initial value will be in the second quadrant. If we
want to solve cos θ = a, where a is not a “nice” value, then the
solution will be written in terms of the inverse cosine function,

θ = ± cos−1 a+ 2nπ where n is an integer.

Equations with sine instead of cosine work in much the same
way. However sine is not an even function, so after finding an
initial solution θ = α, the next solution is not −α. By using the

θ

y y = sin θ
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be able to see that the next solution is π−α; then for the complete
solution, add multiples of 2π as in the cosine case. For example,
the complete solution of sin θ = 1

2
is

θ = π

6
+ 2nπ or θ = 5π

6
+ 2nπ , where n is an integer.

Note that the equations cos θ ==and sin θ = a have no solution
unless −1 ≤ a ≤ 1.

The graph of the tangent function does not oscillate like co-
sine and sine, but is always increasing (with “breaks”). So we’ll



EXERCISES.

Please try to complete the following exercises. Remember that
you cannot


