¶¶Ņõ¶ĢŹÓʵ

The discovery that the atmosphere of Venus absorbs a precise frequency of microwave radiation has just . An international team of scientists used radio telescopes in Hawaii and Chile to find signs that the clouds on Earthā€™s neighbouring planet contain tiny quantities of a molecule called phosphine.

Phosphine is a compound made from phosphorus and hydrogen, and on Earth its only natural source is tiny microbes that live in oxygen-free environments. Itā€™s too early to say whether phosphine is also a sign of life on Venus ā€“ but no other explanation so far proposed seems to fit.

This video shows how methane was detected in the atmosphere of Mars. The process is the same for finding phosphine on Venus.

What makes an atmosphere?

The molecular makeup of a planetā€™s atmosphere normally depends on what its parent star is made of, the planetā€™s position in its starā€™s system, and the chemical and geological processes that take place given these conditions.

There is phosphine in the atmospheres of Jupiter and Saturn, for example, but there itā€™s not a sign of life. Scientists think it is formed in the deep atmosphere at high pressures and temperatures, then dredged into the upper atmosphere by a strong convection current.

Although phosphine quickly breaks down into phosphorus and hydrogen in the top clouds of these planets, enough lingers ā€“ 4.8 parts per million ā€“ to be observable. The phosphorus may be what gives clouds on Jupiter a reddish tinge.

Things are different on a rocky planet like Venus. The new research has found fainter traces of phosphine in the atmosphere, at 20 parts per billion.

Lightning, clouds, volcanoes and meteorite impacts might all produce some phosphine, but not enough to counter the rapid destruction of the compound in Venusā€™s highly oxidising atmosphere. The researchers considered all the chemical processes they could think of on Venus, but none could explain the concentration of phosphine. Whatā€™s left?

On Earth, phosphine is only produced by microbial life (and by various industrial processes) ā€“ and the concentration in our atmosphere is in the parts per trillion range. The much higher concentration on Venus cannot be ignored.

Signs of life?

To determine whether the phosphine on Venus is really produced by life, chemists and geologists will be trying to identify other reactions and processes that could be alternative explanations.

Meanwhile, biologists will be trying to better understand the microbes that live in Venus-like conditions on Earth ā€“ high temperatures, high acidity, and high levels of carbon dioxide ā€“ and also ones that produce phosphine.

When Earth microbes produce phosphine, they do it via an ā€œanaerobicā€ process, which means it happens where no oxygen is present. It has been observed in places such as activated sludge and sewage treatment plants, but the exact collection of microbes and processes is not well understood.

Biologists will also be trying to work out whether the microbes on Earth that produce phosphine could conceivably do it under the harsh Venusian conditions. If there is some biological process producing phosphine on Venus, it may be a form of ā€œlifeā€ very different from what we know on Earth.

Searches for life beyond Earth have often skipped over Venus, because its surface temperature is around 500ā„ƒ and the atmospheric pressure is almost 100 times greater than on Earth. Conditions are as we know it about 50 kilometres off the ground, although there are still vast clouds of sulfuric acid to deal with.

Molecular barcodes

The researchers found the phosphine using spectroscopy, which is the study of how light interacts with molecules. When sunlight passes through Venusā€™s atmosphere, each molecule absorbs very specific colours of this light.

Using telescopes on Earth, we can take this light and split it into a massive rainbow. Each type of molecule present in Venusā€™ atmosphere produces a distinctive pattern of dark absorption lines in this rainbow, like an identifying barcode.

A rainbow image of stripes fading from red through the visible spectrum to blue, with narrow black lines.

The full visible spectrum of sunlight, showing the dark ā€˜barcodesā€™ that indicate the presence of different atoms and molecules.

This barcode is not always strongest in visible light. Sometimes it can only be detected in the parts of the electromagnetic spectrum that are invisible to the human eye, such as UV rays, microwave, radio waves and infrared.

The barcode of carbon dioxide, for example, is most evident in the infrared region of the spectrum.

While phosphine on Jupiter was first detected in infrared, for Venus observations astronomers used radio telescopes: the (ALMA) and (JCMT), which can detect the barcode of phosphine in millimetre wavelengths.

New barcodes, new discoveries

The discovery of phosphine on Venus relied not only on new observations, but also a more detailed knowledge of the compoundā€™s barcode. Accurately predicting the barcode of phosphine across all relevant frequencies took the whole PhD of astrochemist Clara Sousa-Silva in the at University College London in 2015.

She used computational quantum chemistry ā€“ basically putting her molecule into a computer and solving the equations that describe its behaviour ā€“ to predict the strength of the barcode at different colours. She then tuned her model using available experimental data before making the available to astronomers.

Sousa-Silva originally thought her data would be used to study Jupiter and Saturn, as well as weird stars and distant ā€œhot Jupiterā€ exoplanets.

More recently, she led the detailed consideration of ā€“ a molecule whose presence implies life. This analysis demonstrated that, on small rocky exoplanets, phosphine should not be present in observable concentrations unless there was life there as well.

But she no doubt wouldnā€™t have dreamed of a phone call from an astronomer who has discovered phosphine on our nearest planetary neighbour. With phosphine on Venus, we wonā€™t be limited to speculating and looking for molecular barcodes. We will be able to send probes there and hunt for the microbes directly.

, Lecturer, ; , Senior Lecturer, , and , Program Manager / Adjunct Research Fellow,

This article is republished from under a Creative Commons license. Read the .

The Conversation

Ģż